The PUT Surveillance Database

  • Michał Fularz
  • Marek Kraft
  • Adam Schmidt
  • Jakub Niechciał
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 389)


In this paper we present a new, publicly available database of color, high resolution images useful in evaluation of various algorithms in the field of video surveillance. The additional data provided with the images facilitates the evaluation of tracking, recognition and reidentification across sequences of images.


Video surveillance Image dataset Object recognition Object tracking Reidentification 



This research was financed by the Polish National Science Centre grant funded according to the decision DEC-2011/03/N/ST6/03022, which is gratefully acknowledged.


  1. 1.
    Aghajan, H., Cavallaro, A.: Multi-Camera Networks: Principles and Applications. Academic press, London (2009)Google Scholar
  2. 2.
    Bedagkar-Gala, A., Shah, S.K.: A survey of approaches and trends in person re-identification. Image Vis. Comput. 32(4), 270–286 (2014)CrossRefGoogle Scholar
  3. 3.
    Bhanu, B., Ravishankar, C., Roy-Chowdhury, A., Aghajan, H., Terzopoulos, D.: Distributed Video Sensor Networks. Springer (2011)Google Scholar
  4. 4.
    Bialkowski, A., Denman, S., Lucey, P., Sridharan, S., Fookes, C.B.: A database for person re-identification in multi-camera surveillance networks. In: Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA 12), pp. 1–8. IEEE (2012)Google Scholar
  5. 5.
    Brown, L.M., Senior, A.W., Tian, Y.l., Connell, J., Hampapur, A., Shu, C.F., Merkl, H., Lu, M.: Performance evaluation of surveillance systems under varying conditions. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Colorado, USA. Citeseer (2005)Google Scholar
  6. 6.
    Clapés, A., Reyes, M., Escalera, S.: Multi-modal user identification and object recognition surveillance system. Pattern Recognit. Lett. 34(7), 799–808 (2013)Google Scholar
  7. 7.
    Dadashi, N., Stedmon, A., Pridmore, T.: Semi-automated CCTV surveillance: the effects of system confidence, system accuracy and task complexity on operator vigilance, reliance and workload. Appl. Ergon. 44(5), 730–738 (2013)CrossRefGoogle Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 1, pp. 886–893 (2005)Google Scholar
  9. 9.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2009, pp. 304–311 (2009)Google Scholar
  10. 10.
    Donald, F.M., Donald, C.H.M.: Task disengagement and implications for vigilance performance in CCTV surveillance. Cogn. Technol. Work 17(1) (2015)Google Scholar
  11. 11.
    Fauquet, J.: Algorithm for removing dct noise patterns in block encoded images. Electron. Lett. 34, 2322–2323(1) (1998)Google Scholar
  12. 12.
    Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision—ECCV 2008. Lecture Notes in Computer Science, vol. 5302, pp. 262–275. Springer, Berlin (2008)CrossRefGoogle Scholar
  13. 13.
    Li, J., Huang, L., Liu, C.: Robust people counting in video surveillance: dataset and system. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 54–59 (2011)Google Scholar
  14. 14.
    Milan, A., Schindler, K., Roth, S.: Challenges of ground truth evaluation of multi-target tracking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 735–742 (2013)Google Scholar
  15. 15.
    Overett, G., Petersson, L., Brewer, N., Andersson, L., Pettersson, N.: A new pedestrian dataset for supervised learning. In: Intelligent Vehicles Symposium, 2008 IEEE, pp. 373–378 (2008)Google Scholar
  16. 16.
    Vazquez, D., Lopez, A., Marin, J., Ponsa, D., Geroimo, D.: Virtual and real world adaptation for pedestrian detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 797–809 (2014)CrossRefGoogle Scholar
  17. 17.
    Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recognit. Lett. 34(1), 3–19 (2013)Google Scholar
  18. 18.
    Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418 (2013)Google Scholar
  19. 19.
    Zhu, C., Bichot, C.E., Chen, L.: Multi-scale color local binary patterns for visual object classes recognition. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3065–3068 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michał Fularz
    • 1
  • Marek Kraft
    • 1
  • Adam Schmidt
    • 1
  • Jakub Niechciał
    • 1
  1. 1.Institute of Control and Information EngineeringPoznań, University of TechnologyPoznańPoland

Personalised recommendations