Skip to main content

Environmental Effects on CNF/Polymer Composites

  • Chapter
  • First Online:
Carbon Nanofiber Reinforced Polymer Composites

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 1078 Accesses

Abstract

A crucial factor that affects all composite materials exposed to typical service conditions is environmental degradation . It has been shown that over time the combination of moisture and fluctuating temperatures degrades the structure of polymeric composites through chemical and morphological degradation mechanisms. Experimental investigations have not only demonstrated degradation of the polymeric matrix but also of the CNF–matrix interface due to surface morphology variation caused by weathering. This chapter aims to focus on the moisture effects on the structure and mechanical properties of CNF/polymer composites in an effort to offer insight into the mechanisms of degradation and failure under load after moisture exposure. However, information on this aspect of CNF/polymer composites is in the nascent stage and extensive future work is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Saleh, M. H., & Sundararaj, U. (2009). A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon, 47(1), 2–22.

    Article  Google Scholar 

  2. Al-Saleh, M. H., & Sundararaj, U. (2011). Review of the mechanical properties of carbon nanofiber/polymer composites. Composites Part A Applied Science and Manufacturing, 42(12), 2126–2142.

    Article  Google Scholar 

  3. Bal, S. (2010). Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Materials and Design, 31(5), 2406–2413.

    Article  Google Scholar 

  4. Hammel, E., Tang, X., Trampert, M., Schmitt, T., Mauthner, K., Eder, A., & Pötschke, P. (2004). Carbon nanofibers for composite applications. Carbon, 42(5–6), 1153–1158.

    Article  Google Scholar 

  5. Colloca, M., Gupta, N., & Porfiri, M. (2013). Tensile properties of carbon nanofiber reinforced multiscale syntactic foams. Composite Part B Engineering, 44(1), 584–591.

    Article  Google Scholar 

  6. Dimchev, M., Caeti, R., & Gupta, N. (2010). Effect of carbon nanofibers on tensile and compressive characteristics of hollow particle filled composites. Materials and Design, 31(3), 1332–1337.

    Article  Google Scholar 

  7. Ahmad, M., Singh, D., Fu, Y. Q., Miraftab, M., & Luo, J. K. (2011). Stability and deterioration of a shape memory polymer fabric composite under thermomechanical stress. Polymer Degradation and Stability, 96(8), 1470–1477.

    Article  Google Scholar 

  8. Chevali, V. S., Dean, D. R., & Janowski, G. M. (2010). Effect of environmental weathering on flexural creep behavior of long fiber-reinforced thermoplastic composites. Polymer Degradation and Stability, 95(12), 2628–2640.

    Article  Google Scholar 

  9. Chung, K., & Seferis, J. C. (2001). Evaluation of thermal degradation on carbon fiber/cyanate ester composites. Polymer Degradation and Stability, 71(3), 425–434.

    Article  Google Scholar 

  10. Abu-Sharkh, B. F., & Hamid, H. (2004). Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polymer Degradation and Stability, 85(3), 967–973.

    Article  Google Scholar 

  11. Shen, C.-H., & Springer, G. S. (1976). Moisture absorption and desorption of composite materials. Journal of Composite Materials, 10(1), 2–20.

    Article  Google Scholar 

  12. Adamson, M. J. (1980). Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. Journal of Materials Science, 15(7), 1736–1745.

    Article  Google Scholar 

  13. Ardebili, H., Ee Hua, W., & Pecht, M. (2003). Hygroscopic swelling and sorption characteristics of epoxy molding compounds used in electronic packaging. IEEE Transactions on Components and Packaging Technologies 26(1), 206–214.

    Google Scholar 

  14. Shirangi, M. H., & Michel, B. (2010). Mechanism of moisture diffusion, hygroscopic swelling, and adhesion degradation in epoxy molding compounds. In X. J. Fan & E. Suhir (Eds.) Moisture sensitivity of plastic packages of IC devices. New York: Springer.

    Google Scholar 

  15. Abot, J. L., Yasmin, A., & Daniel, I. M. (2005). Hygroscopic behavior of woven fabric carbon-epoxy composites. Journal of Reinforced Plastics and Composites, 24(2), 195–207.

    Article  Google Scholar 

  16. Srihari, S., Revathi, A., & Rao, R. M. V. G. K. (2002). Hygrothermal effects on RT-cured glass-epoxy composites in immersion environments. Part A: Moisture absorption characteristics. Journal of Reinforced Plastics and Composites 21(11), 983–991.

    Google Scholar 

  17. Joshi, O. K. (1983). The effect of moisture on the shear properties of carbon fibre composites. Composites, 14(3), 196–200.

    Article  Google Scholar 

  18. Zafar, A., Bertocco, F., Schjødt-Thomsen, J., & Rauhe, J. C. (2012). Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites. Composites Science and Technology, 72(6), 656–666.

    Article  Google Scholar 

  19. Woldesenbet, E., Gupta, N., & Vinson, J. R. (2002). Determination of moisture effects on impact properties of composite materials. Journal of Materials Science, 37(13), 2693–2698.

    Article  Google Scholar 

  20. Zhong, Y., & Joshi, S. C. (2015). Impact behavior and damage characteristics of hygrothermally conditioned carbon epoxy composite laminates. Materials and Design, 65, 254–264.

    Article  Google Scholar 

  21. Jain, D., Mukherjee, A., & Kwatra, N. (2014). Local micromechanics of moisture diffusion in fiber reinforced polymer composites. International Journal of Heat and Mass Transfer, 76, 199–209.

    Article  Google Scholar 

  22. Prolongo, S. G., Gude, M. R., & Ureña, A. (2012). Water uptake of epoxy composites reinforced with carbon nanofillers. Composites Part A Applied Science and Manufacturing, 43(12), 2169–2175.

    Article  Google Scholar 

  23. Poveda, R. L., Dorogokupets, G., & Gupta, N. (2013). Carbon nanofiber reinforced syntactic foams: Degradation mechanism for long term moisture exposure and residual compressive properties. Polymer Degradation and Stability, 98(10), 2041–2053.

    Article  Google Scholar 

  24. Jefferson, G. D., Farah, B., Hempowicz, M. L., & Hsiao, K.-T. (2015). Influence of hygrothermal aging on carbon nanofiber enhanced polyester material systems. Composites Part B Engineering, 78, 319–323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Poveda .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Poveda, R.L., Gupta, N. (2016). Environmental Effects on CNF/Polymer Composites. In: Carbon Nanofiber Reinforced Polymer Composites. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23787-9_4

Download citation

Publish with us

Policies and ethics