A Mobile Application for Supporting Archaeologists in the Classification and Recognition of Petroglyphs

  • Vincenzo Deufemia
  • Valentina Indelli Pisano
  • Luca Paolino
  • Paola de Roberto
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 11)

Abstract

In this paper we present a mobile application, named PetroSketch, for supporting archaeologists in the classification and recognition of petroglyph symbols. PetroSketch is a virtual notebook enabling users to draw a petroglyph symbol on a white page, or by following the contour of a symbol captured with the camera, and to obtain its classification and the list of symbols more similar to it. The latter is performed by a flexible image matching algorithm that measures the similarity between petroglyph by using a distance, derived from the image deformation model, which is computationally efficient and robust to local distortions.

Keywords

Image processing Computer vision Cultural heritage Mobile applications Pattern recognition 

Notes

Acknowledgments

This research is supported by the “Indiana MAS and the Digital Preservation of Rock Carvings: A multi-agent system for drawing and natural language understanding aimed at preserving rock carving” FIRB project funded by the Italian Ministry for Education, University and Research, under grant RBFR10PEIT [19].

References

  1. 1.
    Deufemia, V., Paolino, L., Tortora, G., Traverso, A., Mascardi, V., Ancona, M., Martelli, M., Bianchi, N., de Lumley, H.: Investigative analysis across documents and drawings: visual analytics for archaeologists. In: Proceedings of the international working conference on advanced visual interfaces, pp. 539–546. ACM (2012)Google Scholar
  2. 2.
    Mascardi, V., Deufemia, V., Malafronte, D., Ricciarelli, A., Bianchi, N., de Lumley, H.: Rock art interpretation within IndianaMAS. In: Jezic, G., Kusek, M., Nguyen, N.T., Howlett, R., Jain, L. (eds.) Agent and multi-agent systems. technologies and applications. Volume 7327 of Lecture Notes in Computer Science, pp. 271–281. Springer, Berlin (2012)Google Scholar
  3. 3.
    de Lumley, H., Echassoux, A.: the rock carvings of the chalcolithic and ancient bronze age from the Mont Bego area. The Cosmogonic Myths of the Early Metallurgic Settlers in the Southern Alps. L’Anthropologie 113(5P2), 969–1004 (2009)Google Scholar
  4. 4.
    Bicknell, C.M.: A guide to the prehistoric rock engravings in the Italian Maritime Alps. Printed by Giuseppe Bessone (1913)Google Scholar
  5. 5.
    Chippindale, C., Bicknell, C.: Archaeology and science in the 19th century. Antiquity 58(224), 185–193 (1984)Google Scholar
  6. 6.
    Lladòs, J., Valveny, E., Sánchez, G., Martí, E.: Symbol recognition: current advances and perspectives. In: Blostein, D., Kwon, Y.B. (eds.) GREC. Volume 2390 of Lecture Notes in Computer Science, pp. 104–127. Springer, Berlin (2001)Google Scholar
  7. 7.
    Tombre, K., Tabbone, S., Dosch, P.: Musings on symbol recognition. In: Liu, W., Lladòs, J. (eds.) Graphics recognition. Ten years review and future perspectives. Volume 3926 of Lecture Notes in Computer Science, pp. 23–34. Springer, Berlin (2006)Google Scholar
  8. 8.
    Sher, Y.A.: Petroglyphs in Central Asia. Nauka (1980)Google Scholar
  9. 9.
    Takaki, R., Toriwaki, J., Mizuno, S., Izuhara, R., Khudjanazarov, M., Reutova, M.: Shape analysis of petroglyphs in central Asia. Forma 21, 91–127 (2006)Google Scholar
  10. 10.
    Zhu, Q., Wang, X., Keogh, E., Lee, S.H.: An efficient and effective similarity measure to enable data mining of petroglyphs. Data Min. Knowl. Disc. 23, 91–127 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhu, Q., Wang, X., Keogh, E., Lee, S.H.: Augmenting the generalized hough transform to enable the mining of petroglyphs. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1057–1066. ACM (2009)Google Scholar
  12. 12.
    Seidl, M., Breiteneder, C.: Detection and classification of petroglyphs in gigapixel images: preliminary results. In: Proceedings of the 12th international symposium on virtual reality, archaeology and intelligent cultural heritage, pp. 45–48. Eurographics Association (2011)Google Scholar
  13. 13.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  14. 14.
    Keysers, D., Deselaers, T., Gollan, C., Ney, H.: Deformation models for image recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1422–1435 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    Keysers, D., Gollan, C., Ney, H.: Local context in non-linear deformation models for handwritten character recognition. In: Proceedings of international conference on pattern recognition, vol. 4, pp. 511–514 (2004)Google Scholar
  16. 16.
    Dreuw, P., Deselaers, T., Keysers, D., Ney, H.: Modeling image variability in appearance-based gesture recognition. In: ECCV workshop on statistical methods in multi-image and video processing, Graz, Austria, pp. 7–18 (2006)Google Scholar
  17. 17.
    Springmann, M., Dander, A., Schuldt, H.: Improving efficiency and effectiveness of the image distortion model. Pattern Recogn. Lett. 29(15), 2018–2024 (2008)CrossRefGoogle Scholar
  18. 18.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)MATHCrossRefGoogle Scholar
  19. 19.
    Mascardi, V., Briola, D., Locoro, A., Grignani, D., Deufemia, V., Paolino, L., Bianchi, N., de Lumley, H., Malafronte, D., Ricciarelli, A.: A holonic multi-agent system for sketch, image and text interpretation in the rock art domain. Int. J. Innov. Comput. Inf. Control 10(1), 81–100 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vincenzo Deufemia
    • 1
  • Valentina Indelli Pisano
    • 1
  • Luca Paolino
    • 1
  • Paola de Roberto
    • 1
  1. 1.Università di SalernoFiscianoItaly

Personalised recommendations