Comparing Classifiers for Web User Intent Understanding

  • Vincenzo Deufemia
  • Miriam Granatello
  • Alessandro Merola
  • Emanuele Pesce
  • Giuseppe Polese
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 11)

Abstract

Understanding user intent during a web navigation session is a challenging topic. Existing approaches base such activity on many different features, including HCI features, which are also used by classifiers to determine the type of a web query. In this paper we present several experiments aiming to compare the performances of main classifiers, and propose a metric to evaluate them and detect the most promising features for deriving a better classifier.

Keywords

User intent understanding HCI features Web search 

References

  1. 1.
    Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: Proceedings of the International Conference on Research and Development in Information Retrieval, pp. 19–26. SIGIR’06, ACM (2006)Google Scholar
  2. 2.
    Deufemia, V., Giordano, M., Polese, G., Simonetti, L.: Exploiting interaction features in user intent understanding. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) Web Technologies and Applications. Volume 7808 of Lecture Notes in Computer Science, pp. 506–517 (2013)Google Scholar
  3. 3.
    Kang, I., Kim, G.: Query type classification for web document retrieval. In: Proceedings of the Conference on Research and Development in Information Retrieval, pp. 64–71. SIGIR’03, ACM (2003)Google Scholar
  4. 4.
    Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in web search. In: Proceedings of the International Conference on World Wide Web, pp. 391–400. WWW’05, ACM (2005)Google Scholar
  5. 5.
    Agichtein, E., Brill, E., Dumais, S., Ragno, R.: Learning user interaction models for predicting web search result preferences. In: Proceedings of the International Conference on Research and Development in Information Retrieval, pp. 3–10. SIGIR’06, ACM (2006)Google Scholar
  6. 6.
    Jansen, B.J., Booth, D.L.: A.S. Determining the user intent of web search engine queries. In: Proceedings of the International Conference on World Wide Web, pp. 1149–1150. WWW’07, ACM (2007)Google Scholar
  7. 7.
    Tamine, L., Daoud, M., Dinh, B., Boughanem, M.: Contextual query classification in web search. In: Proceedings of International Workshop on Information Retrieval Learning, Knowledge and Adaptability. LWA’08 (2008) pp. 65–68Google Scholar
  8. 8.
    Guo, Q., Agichtein, E.: Ready to buy or just browsing? Detecting web searcher goals from interaction data. In: Proceedings of the International Conference on Research and Development in Information Retrieval, pp. 130–137. SIGIR’10, ACM (2010)Google Scholar
  9. 9.
    Deufemia, V., Giordano, M., Polese, G., Tortora, G.: Inferring web page relevance from human-computer interaction logging. In: Proceedings of the International Conference on Web Information Systems and Technologies, pp. 653–662. WEBIST’12 (2012)Google Scholar
  10. 10.
    Nielsen, J.: F-shaped pattern for reading web content. http://www.useit.com/articles/f-shaped-pattern-reading-web-content/ (2006)
  11. 11.
    Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)CrossRefGoogle Scholar
  12. 12.
    Rose, D., Levinson, D.: Understanding user goals in web search. In: Proceedings of the International Conference on World Wide Web, pp. 13–19. WWW’04, ACM (2004)Google Scholar
  13. 13.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATHGoogle Scholar
  14. 14.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the International Conference on Machine Learning, pp. 282–289. ICML’01 (2001)Google Scholar
  15. 15.
    Morency, L.P., Quattoni, A., Darrell, T.: Latent-dynamic discriminative models for continuous gesture recognition. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 1–8. CVPR’07 (2007)Google Scholar
  16. 16.
    Guo, Q., Agichtein, E.: Beyond dwell time: Estimating document relevance from cursor movements and other post-click searcher behavior. In: Proceedings of the International Conference on World Wide Web, pp. 569–578. WWW’12, ACM (2012)Google Scholar
  17. 17.
    Guo, Q., Agichtein, E.: Towards predicting web searcher gaze position from mouse movements. In: Proceedings of the International Conference on Human Factors in Computing Systems, pp. 3601–3606. CHI EA’10, ACM (2010)Google Scholar
  18. 18.
    Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. SIGIR Forum 37(2), 18–28 (2003)CrossRefGoogle Scholar
  19. 19.
    Guo, Q., Agichtein, E.: Exploring mouse movements for inferring query intent. In: Proceedings of the International Conference on Research and Development in Information Retrieval, pp. 707–708. ACM (2008)Google Scholar
  20. 20.
    Lauer, F., Guermeur, Y.: MSVMpack: A multi-class support vector machine package. J. Mach. Learn. Res. 12, 2269–2272 (2011)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vincenzo Deufemia
    • 1
  • Miriam Granatello
    • 1
  • Alessandro Merola
    • 1
  • Emanuele Pesce
    • 1
  • Giuseppe Polese
    • 1
  1. 1.Università Di SalernoFiscianoItaly

Personalised recommendations