Advertisement

Shape Change Through Programmable Stiffness

  • Michael McEvoy
  • Nikolaus CorrellEmail author
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 109)

Abstract

We present a composite material with embedded sensing and actuation that can perform permanent shape changes by temporarily varying its stiffness and applying an external moment. Varying stiffness is a complementary approach to actuator-chain based approaches that can be accomplished using a large variety of means ranging from heat, electric field or vacuum. A polycaprolactone (PCL) bar provides stiffness at room temperature. Heating elements and thermistors are distributed along the bar so that local regions can be tuned to a specific temperature/stiffness. Applying an external moment using two tendon actuators then lets the material snap into a desired shape. We describe the composite structure, the principles behind shape change using variable stiffness control, and forward and inverse kinematics of the system. We present experimental results using a 5-element bar that can assume different global conformations using two simple actuators.

Keywords

Multi-functional materials Embedded computation Variable stiffness 

Notes

Acknowledgments

This work has been supported by the Airforce Office of Scientific Research under grant number FA9550-12-1-0145, the National Science Foundation under grants number #1150223 and #1153158, and a Beverly Sear’s Graduate Student Research Grant. We are grateful for this support.

References

  1. 1.
    Vasista, S., Tong, L., Wong, K.: Realization of morphing wings: a multidisciplinary challenge. J. Aircr. 49(1), 11–28 (2012)CrossRefGoogle Scholar
  2. 2.
    Weisshaar, T.A.: Morphing aircraft systems: historical perspectives and future challenges. J. Aircr. 50(2), 1–17 (2013)Google Scholar
  3. 3.
    Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., Ishii, H.: jamSheets: thin interfaces with tunable stiffness enabled by layer jamming.In: Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, pp. 65–72. ACM (2014)Google Scholar
  4. 4.
    McEvoy, M.A., Correll, N.: Thermoplastic variable stiffness composites with embedded, networked sensing, actuation, and control. J. Compos. Mater (2014)Google Scholar
  5. 5.
    Yim, M., Zhang, Y., Duff, D.: Modular robots. IEEE Spectr. 39(2), 30–34 (2002)CrossRefGoogle Scholar
  6. 6.
    Correll, N., Onal, C.D., Liang, H., Schoenfeld, E., Rus, D.: Soft autonomous materials—using active elasticity and embedded distributed computation. In: 12th International Symposium on Experimental Robotics, Springer Tracts in Advanced Robotics, Vol. 79, pp. 227–240 (2014)Google Scholar
  7. 7.
    Marchese, A.D., Konrad, K., Onal, C.D., Rus, D.: Design, curvature control, and autonomous positioning of a soft and highly compliant 2D robotic manipulator. In: 2014 IEEE International Conference Robotics and Automation, IEEE (2014)Google Scholar
  8. 8.
    Gandhi, F., Kang, S.G.: Beams with controllable flexural stiffness. Smart Mater. Struct. 16(4), 1179–1184 (2007)CrossRefGoogle Scholar
  9. 9.
    Murray, G., Gandhi, F.: Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations. Smart Mater. Struct. 19(4), 11 (2010)CrossRefGoogle Scholar
  10. 10.
    Shan, W., Lu, T., Majidi, C.: Soft-matter composites with electrically tunable elastic rigidity. Smart Mater. Struct. 22(8), 085005 (2013)CrossRefGoogle Scholar
  11. 11.
    Shanmuganathan, K., Capadona, J.R., Rowan, S.J., Weder, C.: Biomimetic mechanically adaptive nanocomposites. Prog. Polym. Sci. 35(1), 212–222 (2010)CrossRefGoogle Scholar
  12. 12.
    Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: Universal robotic gripper based on the jamming of granular material. Proc. Nat. Acad. Sci. 107(44), 18809–18814 (2010)CrossRefGoogle Scholar
  13. 13.
    Majidi, C., Wood, R.J.: Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl. Phys. Lett. 97(16), 164104–164104 (2010)CrossRefGoogle Scholar
  14. 14.
    Chen, J., Liao, W.: Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater. Struct. 19(3), 035029 (2010)CrossRefGoogle Scholar
  15. 15.
    Varga, Z., Filipcsei, G., Zrínyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47(1), 227–233 (2006)CrossRefGoogle Scholar
  16. 16.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots, Proceedings, vol.1, pp. 399–406. IEEE (1995)Google Scholar
  17. 17.
    Averous, L., Moro, L., Dole, P., Fringant, C.: Properties of thermoplastic blends: starch-polycaprolactone. Polymer 41(11), 4157–4167 (2000)CrossRefGoogle Scholar
  18. 18.
    Li, C., Rahn, C.D.: Design of continuous backbone, cable-driven robots. J. Mech. Des. 124(2), 265–271 (2002)CrossRefGoogle Scholar
  19. 19.
    Webster, R.J., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13), 1661–1683 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations