Advertisement

Visualizing Cortical Tissue Optical Changes During Seizure Activity with Optical Coherence Tomography

  • M. M. EberleEmail author
  • C. L. Rodriguez
  • J. I. Szu
  • Y. Wang
  • M. S. Hsu
  • D. K. Binder
  • B. H. Park
Chapter
Part of the Computational Biology book series (COBO, volume 22)

Abstract

Optical coherence tomography (OCT) is a label-free, high resolution, minimally invasive imaging tool, which can produce millimeter depth-resolved cross-sectional images. We identified changes in the backscattered intensity of infrared light, which occurred during the development of induced seizures in vivo in mice. In a large region of interest, we observed significant decreases in the OCT intensity from cerebral cortex tissue preceding and during generalized tonic-clonic seizures induced with pentylenetetrazol (PTZ). We then leveraged the full spatiotemporal resolution of OCT by studying the temporal evolution of localized changes in backscattered intensity in three dimensions and analyzed the seizure propagation in time-resolved 3D functional images. This allowed for a better understanding and visualization of this biological phenomenon.

Keywords

Optical Coherence Tomography Maximum Intensity Projection Imaging Depth Visualization Technique Cortical Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was sponsored at UC Riverside by the National Institutes of Health R00-EB007241, K08-NS059674, and R01-NS081243; the National Science Foundation IGERT Video Bioinformatics DGE 0903667; and the UC Discovery Grant #213073.

References

  1. 1.
    Matthews PM et al. (2006) Applications of fMRI in translational medicine and clinical practice. Rev Neuroimage 7:732Google Scholar
  2. 2.
    Catana C et al. (2012) PET/MRI for Neurologic Applications. J Nucl Med 53(12):1916Google Scholar
  3. 3.
    Hedrick WR, Hykes DL, Starchman DE (2005) Ultrasound physics and instrumentation, 4th edn. Elsevier, MosbyGoogle Scholar
  4. 4.
    Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2:920Google Scholar
  5. 5.
    Townsend DW (2006) In: Valk PE et al (eds) Positron emission tomography. Springer, New York, pp 1–16Google Scholar
  6. 6.
    Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Op Neurobiol 22:18Google Scholar
  7. 7.
    Deisseroth K (2011) Optogenetics. Nat Methods 8:26Google Scholar
  8. 8.
    Schmitt JM (1999) Optical coherence tomography (OCT): a review. IEEE J Sel Top Quant Electron 5(4):1205Google Scholar
  9. 9.
    Huang D et al. (1991) Optical coherence tomography. Science 254:1178Google Scholar
  10. 10.
    Izatt JA et al. (1996) Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J Sel Top Quant Electron 2(4):1017Google Scholar
  11. 11.
    Fujimoto J (2008) In: Drexler W, Fujimoto J (eds) Optical coherence tomography technology and applications. Springer, New York, pp 1–45Google Scholar
  12. 12.
    Rollins AM et al. (1998) In vivo video rate optical coherence tomography. Opt Exp 3(6):219Google Scholar
  13. 13.
    de Boer JF et al. (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28, 2067Google Scholar
  14. 14.
    Yun SH et al. (2003) High-speed spectral domain optical coherence tomography at 1.3 µm wavelength. Opt Exp 11:3598Google Scholar
  15. 15.
    Choma MA et al. (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Exp 11:2183Google Scholar
  16. 16.
    Leitgeb RA et al. (2004) Ultra high resolution Fourier domain optical coherence tomography. Opt Exp 12(11):2156Google Scholar
  17. 17.
    Bizheva K et al. (2004) Imaging in vitro brain morphology in animal models using ultrahigh resolution optical coherence tomography. J B O 9, 719Google Scholar
  18. 18.
    Wang Y et al. (2012) GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300nm. Opt Exp 20:14797Google Scholar
  19. 19.
    Wojtkowski M et al. (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7(3):457Google Scholar
  20. 20.
    de Boer JF (2008) In: Drexler W, Fujimoto J (eds) Optical coherence tomography technology and applications. Springer, New York, pp 147–175Google Scholar
  21. 21.
    Mujat M et al. (2007) Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. J B O 12(4):041205Google Scholar
  22. 22.
    Yun SH et al. (2003) High-speed spectral domain optical coherence tomography at 1.3 µm wavelength. Opt Exp 11:3598Google Scholar
  23. 23.
    Weber J R et al (2010) Conf Biomed Opt (CD), BSuD110p, (OSA)Google Scholar
  24. 24.
    Binder DK et al. (2004) In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching J Neurosci :8049Google Scholar
  25. 25.
    Rajneesh KF et al. (2010) Optical detection of the pre-seizure state in-vivo. J Neuosurg Abs 113:A422Google Scholar
  26. 26.
    Holthoff K et al. (1998) Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution. Brain Res Bull 47(6):649Google Scholar
  27. 27.
    Jacqueline A et al. (2013) Glial cell changes in epilepsy: Overview of the clinical problem and therapeutic opportunities. Neurochem Intern 63(7):638Google Scholar
  28. 28.
    Satomura Y et al. (2004) In vivo imaging of the rat cerebral microvessels with optical coherence tomography. Clin Hem Micro 31:31Google Scholar
  29. 29.
    Aguirre AD et al. (2006) Depth-resolved imaging of functional activation in the rat cerebral cortex. Opt Lett 31:3459Google Scholar
  30. 30.
    Chen Y et al. (2009) Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation. J Neurosci Methods 178:162Google Scholar
  31. 31.
    Rajagopalan UM, Tanifuji M (2007) Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo. Opt Lett 32:2614–2616Google Scholar
  32. 32.
    Tsytsarev V et al. (2013) Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J Neuro Meth 216:142Google Scholar
  33. 33.
    . Eberle MM et al. (2012) In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography. Bio Opt Exp 3(11):2700Google Scholar
  34. 34.
    Szu JI et al. (2012) Thinned-skull Cortical Window Technique for In Vivo Optical Coherence Tomography Imaging. J V Exp 69, e50053. doi: 10.3791/50053
  35. 35.
    White BR et al. (2003) In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Exp 11(25):3490Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. M. Eberle
    • 1
    Email author
  • C. L. Rodriguez
    • 1
  • J. I. Szu
    • 2
  • Y. Wang
    • 1
  • M. S. Hsu
    • 3
  • D. K. Binder
    • 4
  • B. H. Park
    • 1
  1. 1.Department of Bioengineering, Materials Science and Engineering 243University of CaliforniaRiversideUSA
  2. 2.Translational Neuroscience LaboratoryUniversity of CaliforniaRiversideUSA
  3. 3.Translational Neuroscience LaboratoryUniversity of CaliforniaRiversideUSA
  4. 4.School of MedicineUniversity of CaliforniaRiversideUSA

Personalised recommendations