Video Bioinformatics Databases and Software

  • Ninad S. ThakoorEmail author
  • Alberto C. Cruz
  • Bir Bhanu
Part of the Computational Biology book series (COBO, volume 22)


Video bioinformatics focuses on understanding biological events on various timescales by analyzing spatiotemporal images. Fundamental to the success of this venture is the ability to automatically analyze these images to extract relevant information. For evaluation of an automated image analysis technique, one needs to have the image data, the ground-truth (i.e., the expected outcome), and a statistically meaningful testing process. The field of computer vision, which deals with the automated analysis of all sorts of images, has been making steady progress for years. It has benefited immensely by the availability of public datasets and shared software. This chapter surveys these databases and software.


Computer Vision Algorithm Plant Organelle Linear Algebra Problem Murine Stem Cell Matrix Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) in Video Bioinformatics (DGE-0903667). Alberto Cruz is an IGERT Fellow.


  1. 1.
    Berkeley segmentation data set and benchmarks 500 [Online].
  2. 2.
    PETS 2009 benchmark data [Online].
  3. 3.
    The PASCAL visual object classes homepage [Online].
  4. 4.
    de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9(7):690–696CrossRefGoogle Scholar
  5. 5.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRefGoogle Scholar
  6. 6.
    Maka M, Ulman V, Svoboda D, Matula P, Matula P, Ederra C, Urbiola A, Espaa T, Venkatesan S, Balak DM, Karas P, Bolckov T, Treitov M, Carthel C, Coraluppi S, Harder N, Rohr K, Magnusson KEG, Jaldn J, Blau HM, Dzyubachyk O, Kek P, Hagen GM, Pastor-Escuredo D, Jimenez-Carretero D, Ledesma-Carbayo MJ, Muoz-Barrutia A, Meijering E, Kozubek M, Ortiz-de Solorzano C (2014) A benchmark for comparison of cell tracking algorithms. Bioinformatics [Online].
  7. 7.
    Tobon-Gomez C, Craene MD, McLeod K, Tautz L, Shi W, Hennemuth A, Prakosa A, Wang H, Carr-White G, Kapetanakis S, Lutz A, Rasche V, Schaeffter T, Butakoff C, Friman O, Mansi T, Sermesant M, Zhuang X, Ourselin S, Peitgen H-O, Pennec X, Razavi R, Rueckert D, Frangi A, Rhode K (2013) Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med Image Anal 17(6):632–648 [Online].
  8. 8.
    Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KEG, Jalden J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez J-Y, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan H-W, Tsai Y-S, de Solorzano CO, Olivo-Marin J-C, Meijering E (2014) Objective comparison of particle tracking methods. Nat Methods 11(3):281–289 [Online].
  9. 9.
    Ljosa V, Sokolnicki KL, Carpenter AE (2012) Annotated high-throughput microscopy image sets for validation. Nat Methods 9(7):637–637 [Online].
  10. 10.
    Mercier L, Del Maestro RF, Petrecca K, Araujo D, Haegelen C, Collins DL (2012) Online database of clinical mr and ultrasound images of brain tumors. Med Phys 39(6):3253–3261 [Online].
  11. 11.
    Mano S, Nakamura T, Kondo M, Miwa T, Nishikawa S, Mimura T, Nagatani A, Nishimura M (2014) The plant organelles database 3 (podb3) update 2014: integrating electron micrographs and new options for plant organelle research. Plant Cell Physiol 55(1):e1 [Online].
  12. 12.
    Jhuang H, Garrote E, Yu X, Khilnani V, Poggio T, Steele AD, Serre T (2010) Automated home-cage behavioural phenotyping of mice. Nat Commun 1:68 [Online].
  13. 13.
    Fomel S, Claerbout JF (2009) Reproducible research. Comput Sci Eng 11(1):5–7CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ninad S. Thakoor
    • 1
    Email author
  • Alberto C. Cruz
    • 1
  • Bir Bhanu
    • 1
  1. 1.Center for Research in Intelligent SystemsUniversity of CaliforniaRiversideUSA

Personalised recommendations