Skip to main content

Nonmonotonic Learning in Large Biological Networks

  • Conference paper
  • First Online:
Inductive Logic Programming

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9046))

Abstract

This paper introduces a new open-source implementation of a nonmonotonic learning method called XHAIL and shows how it can be used for abductive and inductive inference on metabolic networks that are many times larger than could be handled by the preceding prototype. We summarise several implementation improvements that increase its efficiency and we introduce an extended form of language bias that further increases its usability. We investigate the system’s scalability in a case study involving real data previously collected by a Robot Scientist and show how it led to the discovery of an error in a whole-organism model of yeast metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/cathexis-bris-ac-uk/XHAIL.

  2. 2.

    In fact this change was already present in the model used in [16] but the description in the paper incorrectly reproduced an earlier version of the rule from [14].

References

  1. Förster, J., Famili, I., Fu, P., Palsson, B., Nielsen, J.: Genome-scale reconstruction of the saccharomyces cerevisiae metabolic network. Gen. Res. 13(2), 244–53 (2003)

    Article  Google Scholar 

  2. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set solver. In: Logic Programming and Nonmonotonic Reasoning, pp. 260–265. Springer (2007)

    Google Scholar 

  3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comp. 9(3/4), 365–386 (1991)

    Article  MATH  Google Scholar 

  4. Heavner, B.D., et al.: Yeast 5 – an expanded reconstruction of the saccharomyces cerevisiae metabolic network. BMC Syst. Biol. 6, 55 (2012)

    Article  Google Scholar 

  5. Kakas, A., Kowalski, R., Toni, F.: Abductive logic programming. J. Logic Comput. 2(6), 719–770 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L.N.: The automation of science. Science 324(5923), 85–89 (2009)

    Article  Google Scholar 

  7. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427(6971), 247–252 (2004)

    Article  Google Scholar 

  8. Lehninger, A.: Biochemistry: The Molecular Basis of Cell Structure and Function, 2nd edn. Worth Publishers, New York (1979)

    Google Scholar 

  9. Muggleton, S.: Inverse entailment and Progol. New Gen. Comp. 13, 245–286 (1995)

    Article  Google Scholar 

  10. Muggleton, S.H., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic Program. 19(20), 629–679 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27(1), 29–34 (1999)

    Article  Google Scholar 

  13. Ray, O.: Hybrid Abductive-Inductive Learning. Ph.D. thesis, Department of Computing, Imperial College London, UK (2005)

    Google Scholar 

  14. Ray, O., Whelan, K., King, R.: A nonmonotonic logical approach for modelling and revising metabolic networks. In: Proceedings of 3rd International Conference on Complex, Intelligent and Software Intensive Systems, pp. 825–829. IEEE (2009)

    Google Scholar 

  15. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Logic 7(3), 329–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ray, O., Whelan, K., King, R.: Automatic revision of metabolic networks through logical analysis of experimental data. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 194–201. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intel. 138(1–2), 181–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tamaddoni-Nezhad, A., Kakas, A.C., Muggleton, S.H., Pazos, F.: Modelling inhibition in metabolic pathways through abduction and induction. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 305–322. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by EPSRC grant EP/K035959/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bragaglia, S., Ray, O. (2015). Nonmonotonic Learning in Large Biological Networks. In: Davis, J., Ramon, J. (eds) Inductive Logic Programming. Lecture Notes in Computer Science(), vol 9046. Springer, Cham. https://doi.org/10.1007/978-3-319-23708-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23708-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23707-7

  • Online ISBN: 978-3-319-23708-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics