Abstract
This paper introduces a new open-source implementation of a nonmonotonic learning method called XHAIL and shows how it can be used for abductive and inductive inference on metabolic networks that are many times larger than could be handled by the preceding prototype. We summarise several implementation improvements that increase its efficiency and we introduce an extended form of language bias that further increases its usability. We investigate the system’s scalability in a case study involving real data previously collected by a Robot Scientist and show how it led to the discovery of an error in a whole-organism model of yeast metabolism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
References
Förster, J., Famili, I., Fu, P., Palsson, B., Nielsen, J.: Genome-scale reconstruction of the saccharomyces cerevisiae metabolic network. Gen. Res. 13(2), 244–53 (2003)
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set solver. In: Logic Programming and Nonmonotonic Reasoning, pp. 260–265. Springer (2007)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comp. 9(3/4), 365–386 (1991)
Heavner, B.D., et al.: Yeast 5 – an expanded reconstruction of the saccharomyces cerevisiae metabolic network. BMC Syst. Biol. 6, 55 (2012)
Kakas, A., Kowalski, R., Toni, F.: Abductive logic programming. J. Logic Comput. 2(6), 719–770 (1992)
King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L.N.: The automation of science. Science 324(5923), 85–89 (2009)
King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427(6971), 247–252 (2004)
Lehninger, A.: Biochemistry: The Molecular Basis of Cell Structure and Function, 2nd edn. Worth Publishers, New York (1979)
Muggleton, S.: Inverse entailment and Progol. New Gen. Comp. 13, 245–286 (1995)
Muggleton, S.H., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)
Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic Program. 19(20), 629–679 (1994)
Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27(1), 29–34 (1999)
Ray, O.: Hybrid Abductive-Inductive Learning. Ph.D. thesis, Department of Computing, Imperial College London, UK (2005)
Ray, O., Whelan, K., King, R.: A nonmonotonic logical approach for modelling and revising metabolic networks. In: Proceedings of 3rd International Conference on Complex, Intelligent and Software Intensive Systems, pp. 825–829. IEEE (2009)
Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Logic 7(3), 329–340 (2009)
Ray, O., Whelan, K., King, R.: Automatic revision of metabolic networks through logical analysis of experimental data. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 194–201. Springer, Heidelberg (2010)
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intel. 138(1–2), 181–234 (2002)
Tamaddoni-Nezhad, A., Kakas, A.C., Muggleton, S.H., Pazos, F.: Modelling inhibition in metabolic pathways through abduction and induction. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 305–322. Springer, Heidelberg (2004)
Acknowledgments
This work is supported by EPSRC grant EP/K035959/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bragaglia, S., Ray, O. (2015). Nonmonotonic Learning in Large Biological Networks. In: Davis, J., Ramon, J. (eds) Inductive Logic Programming. Lecture Notes in Computer Science(), vol 9046. Springer, Cham. https://doi.org/10.1007/978-3-319-23708-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-23708-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23707-7
Online ISBN: 978-3-319-23708-4
eBook Packages: Computer ScienceComputer Science (R0)