Skip to main content

Novel Use of Existing Imaging Modalities to Assess Intraocular Inflammation

  • Chapter
  • First Online:
Multimodal Imaging in Uveitis

Abstract

The use of imaging for diagnostic or monitoring purposes may be thought of as a pathway from the imaging device to the operational decision-making made by the clinician and patient together. Advances in any part of this process can lead to better visualization or more accurate image interpretation with direct benefit on patient treatment decisions. Much of the rest of this book rightly focuses on the remarkable progress that has been made in the invention of new devices and the improvement in older devices. In this chapter, we consider some of the areas in which established devices are being used in innovative ways to assess intraocular inflammation and set this in the context of the urgent need for objective quantitative measures of intraocular inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC:

Anterior chamber

ARN:

Acute retinal necrosis

CME:

Cystoid macular edema

CMT:

Central macular thickness

CRVO:

Central retinal vein occlusion

EMEDOCT:

Extramacular enhanced depth optical coherence tomography

ETDRS:

Early Treatment Diabetic Retinopathy Study

FA:

Fluorescein angiography

MUST:

Multicenter Uveitis Steroid Treatment Trial

OCT:

Optical coherence tomography

RNFL:

Retinal nerve fiber layer

SLO:

Scanning laser ophthalmoscopy

References

  1. Denniston A. Heterogeneity of primary outcome measures used in clinical trials of treatments for intermediate, posterior, and panuveitis. Orphanet J Rare Dis. 2015;10:97.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Denniston AK, Dick AD. Systemic therapies for inflammatory eye disease: past, present and future. BMC Ophthalmol. 2013;13:18.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barry RJ, Nguyen QD, Lee RW, et al. Pharmacotherapy for uveitis: current management and emerging therapy. Clin Ophthalmol. 2014;8:1891–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Keane PA, Sadda SR. Imaging chorioretinal vascular disease. Eye (Lond). 2010;24(3):422–7.

    Article  CAS  Google Scholar 

  5. Keane PA, Sadda SR. Retinal imaging in the twenty-first century: state of the art and future directions. Ophthalmology. 2014;121(12):2489–500.

    Article  PubMed  Google Scholar 

  6. Denniston AK, Keane PA, Srivastava SK. Biomarkers and Surrogate Endpoints in Uveitis: The Impact of Quantitative Imaging. Invest Ophthalmol Vis Sci. 2017;58(6):BIO131-BIO140. doi: 10.1167/iovs.17-21788.

    Google Scholar 

  7. Hee MR, Puliafito CA, Wong C, et al. Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol. 1995;113(8):1019–29.

    Article  CAS  PubMed  Google Scholar 

  8. Sonoda S, Sakamoto T, Shirasawa M, et al. Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema. Invest Ophthalmol Vis Sci. 2013;54(8):5367–74.

    Article  CAS  PubMed  Google Scholar 

  9. Barthelmes D, Gillies MC, Sutter FK. Quantitative OCT analysis of idiopathic perifoveal telangiectasia. Invest Ophthalmol Vis Sci. 2008;49(5):2156–62.

    Article  PubMed  Google Scholar 

  10. Barthelmes D, Sutter FK, Gillies MC. Differential optical densities of intraretinal spaces. Invest Ophthalmol Vis Sci. 2008;49(8):3529–34.

    Article  PubMed  Google Scholar 

  11. Ahlers C, Golbaz I, Einwallner E, et al. Identification of optical density ratios in subretinal fluid as a clinically relevant biomarker in exudative macular disease. Invest Ophthalmol Vis Sci. 2009;50(7):3417–24.

    Article  PubMed  Google Scholar 

  12. Neudorfer M, Weinberg A, Loewenstein A, Barak A. Differential optical density of subretinal spaces. Invest Ophthalmol Vis Sci. 2012;53(6):3104–10.

    Article  PubMed  Google Scholar 

  13. Horii T, Murakami T, Nishijima K, et al. Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology. 2012;119(5):1047–55.

    Article  PubMed  Google Scholar 

  14. Murakami T, Nishijima K, Akagi T, et al. Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci. 2012;53(3):1506–11.

    Article  PubMed  Google Scholar 

  15. Hornbeak DM, Payal A, Pistilli M, et al. Interobserver agreement in clinical grading of vitreous haze using alternative grading scales. Ophthalmology. 2014;121(8):1643–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Keane PA, Karampelas M, Sim DA, et al. Objective measurement of vitreous inflammation using optical coherence tomography. Ophthalmology. 2014;121(9):1706–14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Keane P, Balaskas K, Sim D, et al. Automated analysis of vitreous inflammation using spectral domain optical coherence tomography. Transl Vis Sci Technol. 2015;4(5):4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zarranz-Ventura J, Keane PA, Sim DA, et al. EQUATOR study group. Evaluation of objective vitritis grading method using optical coherence tomography: influence of phakic status and previous vitrectomy. Am J Ophthalmol. 2016;161:172–80.e1-4. doi: 10.1016/j.ajo.2015.10.009.

    Google Scholar 

  19. Witmer MT, Kiss S. Wide-field imaging of the retina. Surv Ophthalmol. 2013;58(2):143–54.

    Article  PubMed  Google Scholar 

  20. Tripathy K, Sharma YR, Gogia V, et al. Serial ultra wide field imaging for following up acute retinal necrosis cases. Oman J Ophthalmol. 2015;8(1):71–2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nicholson BP, Nigam D, Miller D, et al. Comparison of wide-field fluorescein angiography and 9-field montage angiography in uveitis. Am J Ophthalmol. 2014;157(3):673–7.

    Article  PubMed  Google Scholar 

  22. Suzuki J, Goto H, Minoda H, et al. Analysis of retinal findings of acute retinal necrosis using optical coherence tomography. Ocul Immunol Inflamm. 2006;14(3):165–70.

    Article  PubMed  Google Scholar 

  23. Orefice JL, Costa RA, Orefice F, et al. Vitreoretinal morphology in active ocular toxoplasmosis: a prospective study by optical coherence tomography. Br J Ophthalmol. 2007;91(6):773–80.

    Article  PubMed  Google Scholar 

  24. Kurup SP, Khan S, Gill MK. Spectral domain optical coherence tomography in the evaluation and management of infectious retinitis. Retina. 2014;34(11):2233–41.

    Article  PubMed  Google Scholar 

  25. Orefice JL, Costa RA, Scott IU, et al. Spectral optical coherence tomography findings in patients with ocular toxoplasmosis and active satellite lesions (MINAS report 1). Acta Ophthalmol. 2013;91(1):e41–7.

    Article  PubMed  Google Scholar 

  26. Keane PA, Allie M, Turner SJ, et al. Characterization of birdshot chorioretinopathy using extramacular enhanced depth optical coherence tomography. JAMA Ophthalmol. 2013;131(3):341–50.

    Article  PubMed  Google Scholar 

  27. Reznicek L, Klein T, Wieser W, et al. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices. Graefes Arch Clin Exp Ophthalmol. 2014;252(6):1009–16.

    Article  PubMed  Google Scholar 

  28. Kolb JP, Klein T, Kufner CL, et al. Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle. Biomed Opt Express. 2015;6(5):1534–52.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Staurenghi G, Viola F, Mainster MA, et al. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol. 2005;123(2):244–52.

    Article  PubMed  Google Scholar 

  30. Manivannan A, Plskova J, Farrow A, et al. Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol. 2005;140(3):525–7.

    Article  PubMed  Google Scholar 

  31. Campbell JP, Leder HA, Sepah YJ, et al. Wide-field retinal imaging in the management of noninfectious posterior uveitis. Am J Ophthalmol. 2012;154(5):908–11.e2.

    Article  PubMed  Google Scholar 

  32. Leder HA, Campbell JP, Sepah YJ, et al. Ultra-wide-field retinal imaging in the management of non-infectious retinal vasculitis. J Ophthalmic Inflamm Infect. 2013;3(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karampelas M, Sim DA, Chu C, et al. Quantitative analysis of peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography. Am J Ophthalmol. 2015;159(6):1161–8.e1.

    Article  PubMed  Google Scholar 

  34. Tran TH, de Smet MD, Bodaghi B, et al. Uveitic macular oedema: correlation between optical coherence tomography patterns with visual acuity and fluorescein angiography. Br J Ophthalmol. 2008;92(7):922–7.

    Article  CAS  PubMed  Google Scholar 

  35. Antcliff RJ, Stanford MR, Chauhan DS, et al. Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. Ophthalmology. 2000;107(3):593–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kempen JH, Sugar EA, Jaffe GJ, et al. Fluorescein angiography versus optical coherence tomography for diagnosis of uveitic macular edema. Ophthalmology. 2013;120(9):1852–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tsui I, Kaines A, Havunjian MA, et al. Ischemic index and neovascularization in central retinal vein occlusion. Retina. 2011;31(1):105–10.

    Article  PubMed  Google Scholar 

  38. Oliver SC, Schwartz SD. Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography. Semin Ophthalmol. 2010;25(1–2):27–33.

    Article  PubMed  Google Scholar 

  39. Kaines A, Tsui I, Sarraf D, Schwartz S. The use of ultra wide field fluorescein angiography in evaluation and management of uveitis. Semin Ophthalmol. 2009;24(1):19–24.

    Article  PubMed  Google Scholar 

  40. Croft DE, van Hemert J, Wykoff CC, et al. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2014;45(4):312–7.

    Article  PubMed  Google Scholar 

  41. Escudero-Sanz I, Navarro R. Off-axis aberrations of a wide-angle schematic eye model. J Opt Soc Am A Opt Image Sci Vis. 1999;16(8):1881–91.

    Article  CAS  PubMed  Google Scholar 

  42. Sagong M, van Hemert J, Olmos de Koo LC, et al. Assessment of accuracy and precision of quantification of ultra-widefield images. Ophthalmology. 2015;122(4):864–6.

    Article  PubMed  Google Scholar 

  43. Sharma S, Lowder CY, Vasanji A, et al. Automated analysis of anterior chamber inflammation by spectral-domain optical coherence tomography. Ophthalmology. 2015;122(7):1464–70.

    Article  PubMed  Google Scholar 

  44. Rose-Nussbaumer J, Li Y, Lin P, et al. Aqueous cell differentiation in anterior uveitis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(3):1430–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Multicenter Uveitis Steroid Treatment Trial Research G, Kempen JH, Altaweel MM, et al. Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the multicenter uveitis steroid treatment trial. Ophthalmology. 2011;118(10):1916–26.

    Article  Google Scholar 

  46. Mackensen F, Jakob E, Springer C, et al. Interferon versus methotrexate in intermediate uveitis with macular edema: results of a randomized controlled clinical trial. Am J Ophthalmol. 2013;156(3):478–86.e1.

    Article  CAS  PubMed  Google Scholar 

  47. Khanduja S, Singh S, Venkatesh P, Patwardhan SD. Evaluation of discrepancies between fluorescein angiography and optical coherence tomography in macular edema in uveitis. Am J Ophthalmol. 2013;155(3):609.

    Article  PubMed  Google Scholar 

  48. Ossewaarde-van Norel J, Camfferman LP, Rothova A. Discrepancies between fluorescein angiography and optical coherence tomography in macular edema in uveitis. Am J Ophthalmol. 2012;154(2):233–9.

    Article  PubMed  Google Scholar 

  49. Belair ML, Kim SJ, Thorne JE, et al. Incidence of cystoid macular edema after cataract surgery in patients with and without uveitis using optical coherence tomography. Am J Ophthalmol. 2009;148(1):128–35.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lowder C, Belfort R Jr, Lightman S, et al. Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol. 2011;129(5):545–53.

    Article  PubMed  Google Scholar 

  51. Sugar EA, Jabs DA, Altaweel MM, et al. Identifying a clinically meaningful threshold for change in uveitic macular edema evaluated by optical coherence tomography. Am J Ophthalmol. 2011;152(6):1044–52.e5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kiss CG, Barisani-Asenbauer T, Maca S, et al. Reading performance of patients with uveitis-associated cystoid macular edema. Am J Ophthalmol. 2006;142(4):620–4.

    Article  PubMed  Google Scholar 

  53. Pelosini L, Hull CC, Boyce JF, et al. Optical coherence tomography may be used to predict visual acuity in patients with macular edema. Invest Ophthalmol Vis Sci. 2011;52(5):2741–8.

    Article  PubMed  Google Scholar 

  54. Lehpamer B, Moshier E, Goldberg N, et al. Subretinal fluid in uveitic macular edema: effect on vision and response to therapy. Am J Ophthalmol. 2013;155(1):143–9.

    Article  PubMed  Google Scholar 

  55. Munk MR, Kiss CG, Steiner I, et al. Systematic correlation of morphologic alterations and retinal function in eyes with uveitis-associated cystoid macular oedema during development, resolution and relapse. Br J Ophthalmol. 2013;97(10):1289–96.

    Article  PubMed  Google Scholar 

  56. Taylor SR, Lightman SL, Sugar EA, et al. The impact of macular edema on visual function in intermediate, posterior, and panuveitis. Ocul Immunol Inflamm. 2012;20(3):171–81.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

Dr. Keane has received a proportion of his funding from the Department of Health’s NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology. The views expressed in the publication are those of the author and not necessarily those of the Department of Health.

Dr. Keane has received travel grants from the Allergan European Retina Panel and given educational presentations for Topcon, Heidelberg, Novartis, Bayer, and Allergan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair K. Denniston PhD, FRCOphth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Denniston, A.K., Keane, P.A. (2018). Novel Use of Existing Imaging Modalities to Assess Intraocular Inflammation. In: Sen, H., Read, R. (eds) Multimodal Imaging in Uveitis. Springer, Cham. https://doi.org/10.1007/978-3-319-23690-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23690-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23689-6

  • Online ISBN: 978-3-319-23690-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics