Abstract
We implement a decision procedure for answering questions about a class of infinite words that might be called (for lack of a better name) “Tribonacci-automatic”. This class includes, for example, the famous Tribonacci word \(\mathbf{T} = 0102010010201\cdots \), the fixed point of the morphism \(0 \rightarrow 01\), \(1 \rightarrow 02\), \(2 \rightarrow 0\). We use our decision procedure to reprove some old results about the Tribonacci word from the literature, such as assertions about the occurrences in \(\mathbf T\) of squares, cubes, palindromes, and so forth. We also obtain some new results, including on enumeration.
Keywords
- Linear Representation
- Critical Exponent
- Decision Procedure
- Canonical Representation
- Linear Recurrence
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options











Notes
- 1.
There is also a version where “prefixes” is replaced by “suffixes”.
References
Allouche, J.P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)
Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)
Barcucci, E., Bélanger, L., Brlek, S.: On Tribonacci sequences. Fibonacci Quart. 42, 314–319 (2004)
Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications, Encylopedia of Mathematics and Its Applications, vol. 137. Cambridge University Press, Cambridge (2011)
Bruyère, V., Hansel, G.: Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181, 17–43 (1997)
Bruyère, V., Hansel, G., Michaux, C.,Villemaire, R.: Logic and \(p\)-recognizable sets of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994), corrigendum. Bull. Belg. Math. Soc. 1, 577 (1994)
Carlitz, L., Scoville, R., Hoggatt, Jr., V.E.: Fibonacci representations of higher order. Fibonacci Quart. 10, 43–69, 94 (1972)
Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of automatic sequences. Int. J. Found. Comp. Sci. 23, 1035–1066 (2012)
Chekhova, N., Hubert, P., Messaoudi, A.: Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci. J. Théorie Nombres Bordeaux 13, 371–394 (2001)
Christou, M., Crochemore, M., Iliopoulos, C.S.: Quasiperiodicities in Fibonacci strings (2012), to appear in Ars Combinatoria. Preprint available at http://arxiv.org/abs/1201.6162
Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)
Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255, 539–553 (2001)
Du, C.F., Mousavi, H., Schaeffer, L., Shallit, J.: Decision algorithms for Fibonacci-automatic words, with applications to pattern avoidance (2014). http://arxiv.org/abs/1406.0670
Duchêne, E., Rigo, M.: A morphic approach to combinatorial games: theTribonacci case. RAIRO Inform. Théor. App. 42, 375–393 (2008)
Frougny, C.: Representations of numbers and finite automata. Math. Systems Theory 25, 37–60 (1992)
Frougny, C., Solomyak, B.: On representation of integers in linear numeration systems. In: Pollicott, M., Schmidt, K. (eds.) Ergodic Theory of \({\mathbb{Z}}^d\) Actions (Warwick, 1993–1994). London Mathematical Society Lecture Note Series, vol. 228, pp. 345–368. Cambridge University Press, Cambridge (1996)
Glen, A.: On sturmian and episturmian words, and related topics. Ph.D. thesis, University of Adelaide (2006)
Glen, A.: Powers in a class of \(a\)-strict episturmian words. Theoret. Comput. Sci. 380, 330–354 (2007)
Glen, A., Justin, J.: Episturmian words: a survey. RAIRO Inform. Théor. App. 43, 402–433 (2009)
Glen, A., Levé, F., Richomme, G.: Quasiperiodic and Lyndon episturmian words. Theoret. Comput. Sci. 409, 578–600 (2008)
Goč, D., Henshall, D., Shallit, J.: Automatic theorem-proving in combinatorics on words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191. Springer, Heidelberg (2012)
Goč, D., Mousavi, H., Shallit, J.: On the number of unbordered factors. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 299–310. Springer, Heidelberg (2013)
Goč, D., Saari, K., Shallit, J.: Primitive words and Lyndon words in automatic and linearly recurrent sequences. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 311–322. Springer, Heidelberg (2013)
Goč, D., Schaeffer, L., Shallit, J.: Subword complexity and k-synchronization. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 252–263. Springer, Heidelberg (2013)
Hales, T.C.: Formal proof. Notices Am. Math. Soc. 55(11), 1370–1380 (2008)
Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret. Comput. Sci. 276, 281–313 (2002)
Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy problem (2014). Preprint available at http://arxiv.org/abs/1402.2184
Presburger, M.: Über die Volständigkeit eines gewissen Systems derArithmetik ganzer Zahlen, in welchem die Addition als einzigeOperation hervortritt. In: Sparawozdanie z I Kongresu matematykówkrajów slowianskich, Warsaw, pp. 92–101, 395 (1929)
Presburger, M.: On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation. Hist. Phil. Logic 12, 225–233 (1991)
Richomme, G., Saari, K., Zamboni, L.Q.: Balance and Abelian complexity of the Tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)
Rosema, S.W., Tijdeman, R.: The Tribonacci substitution. INTEGERS 5 (3), Paper #A13 (2005). Available at http://www.integers-ejcnt.org/vol5-3.html
Shallit, J.: Decidability and enumeration for automatic sequences: a survey. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 49–63. Springer, Heidelberg (2013)
Tan, B., Wen, Z.Y.: Some properties of the Tribonacci sequence. Eur. J. Comb. 28, 1703–1719 (2007)
Turek, O.: Abelian complexity function of the Tribonacci word. J. Integer Sequences 18, Article 15.3.4 (2015). Available at https://cs.uwaterloo.ca/journals/JIS/VOL18/Turek/turek3.html
Acknowledgments
We are very grateful to Amy Glen for her recommendations and advice. We thank Ondrej Turek and the referees for pointing out errors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mousavi, H., Shallit, J. (2015). Mechanical Proofs of Properties of the Tribonacci Word. In: Manea, F., Nowotka, D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science(), vol 9304. Springer, Cham. https://doi.org/10.1007/978-3-319-23660-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-23660-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23659-9
Online ISBN: 978-3-319-23660-5
eBook Packages: Computer ScienceComputer Science (R0)