Skip to main content

Mechanical Proofs of Properties of the Tribonacci Word

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9304)

Abstract

We implement a decision procedure for answering questions about a class of infinite words that might be called (for lack of a better name) “Tribonacci-automatic”. This class includes, for example, the famous Tribonacci word \(\mathbf{T} = 0102010010201\cdots \), the fixed point of the morphism \(0 \rightarrow 01\), \(1 \rightarrow 02\), \(2 \rightarrow 0\). We use our decision procedure to reprove some old results about the Tribonacci word from the literature, such as assertions about the occurrences in \(\mathbf T\) of squares, cubes, palindromes, and so forth. We also obtain some new results, including on enumeration.

Keywords

  • Linear Representation
  • Critical Exponent
  • Decision Procedure
  • Canonical Representation
  • Linear Recurrence

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23660-5_15
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-23660-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Notes

  1. 1.

    There is also a version where “prefixes” is replaced by “suffixes”.

References

  1. Allouche, J.P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    CrossRef  Google Scholar 

  3. Barcucci, E., Bélanger, L., Brlek, S.: On Tribonacci sequences. Fibonacci Quart. 42, 314–319 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications, Encylopedia of Mathematics and Its Applications, vol. 137. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  5. Bruyère, V., Hansel, G.: Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181, 17–43 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Bruyère, V., Hansel, G., Michaux, C.,Villemaire, R.: Logic and \(p\)-recognizable sets of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994), corrigendum. Bull. Belg. Math. Soc. 1, 577 (1994)

    Google Scholar 

  7. Carlitz, L., Scoville, R., Hoggatt, Jr., V.E.: Fibonacci representations of higher order. Fibonacci Quart. 10, 43–69, 94 (1972)

    Google Scholar 

  8. Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of automatic sequences. Int. J. Found. Comp. Sci. 23, 1035–1066 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Chekhova, N., Hubert, P., Messaoudi, A.: Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci. J. Théorie Nombres Bordeaux 13, 371–394 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Christou, M., Crochemore, M., Iliopoulos, C.S.: Quasiperiodicities in Fibonacci strings (2012), to appear in Ars Combinatoria. Preprint available at http://arxiv.org/abs/1201.6162

  11. Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255, 539–553 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Du, C.F., Mousavi, H., Schaeffer, L., Shallit, J.: Decision algorithms for Fibonacci-automatic words, with applications to pattern avoidance (2014). http://arxiv.org/abs/1406.0670

  14. Duchêne, E., Rigo, M.: A morphic approach to combinatorial games: theTribonacci case. RAIRO Inform. Théor. App. 42, 375–393 (2008)

    CrossRef  MATH  Google Scholar 

  15. Frougny, C.: Representations of numbers and finite automata. Math. Systems Theory 25, 37–60 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Frougny, C., Solomyak, B.: On representation of integers in linear numeration systems. In: Pollicott, M., Schmidt, K. (eds.) Ergodic Theory of \({\mathbb{Z}}^d\) Actions (Warwick, 1993–1994). London Mathematical Society Lecture Note Series, vol. 228, pp. 345–368. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  17. Glen, A.: On sturmian and episturmian words, and related topics. Ph.D. thesis, University of Adelaide (2006)

    Google Scholar 

  18. Glen, A.: Powers in a class of \(a\)-strict episturmian words. Theoret. Comput. Sci. 380, 330–354 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Glen, A., Justin, J.: Episturmian words: a survey. RAIRO Inform. Théor. App. 43, 402–433 (2009)

    MathSciNet  Google Scholar 

  20. Glen, A., Levé, F., Richomme, G.: Quasiperiodic and Lyndon episturmian words. Theoret. Comput. Sci. 409, 578–600 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Goč, D., Henshall, D., Shallit, J.: Automatic theorem-proving in combinatorics on words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  22. Goč, D., Mousavi, H., Shallit, J.: On the number of unbordered factors. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 299–310. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  23. Goč, D., Saari, K., Shallit, J.: Primitive words and Lyndon words in automatic and linearly recurrent sequences. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 311–322. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  24. Goč, D., Schaeffer, L., Shallit, J.: Subword complexity and k-synchronization. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 252–263. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  25. Hales, T.C.: Formal proof. Notices Am. Math. Soc. 55(11), 1370–1380 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret. Comput. Sci. 276, 281–313 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy problem (2014). Preprint available at http://arxiv.org/abs/1402.2184

  28. Presburger, M.: Über die Volständigkeit eines gewissen Systems derArithmetik ganzer Zahlen, in welchem die Addition als einzigeOperation hervortritt. In: Sparawozdanie z I Kongresu matematykówkrajów slowianskich, Warsaw, pp. 92–101, 395 (1929)

    Google Scholar 

  29. Presburger, M.: On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation. Hist. Phil. Logic 12, 225–233 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

  30. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and Abelian complexity of the Tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Rosema, S.W., Tijdeman, R.: The Tribonacci substitution. INTEGERS 5 (3), Paper #A13 (2005). Available at http://www.integers-ejcnt.org/vol5-3.html

  32. Shallit, J.: Decidability and enumeration for automatic sequences: a survey. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 49–63. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  33. Tan, B., Wen, Z.Y.: Some properties of the Tribonacci sequence. Eur. J. Comb. 28, 1703–1719 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  34. Turek, O.: Abelian complexity function of the Tribonacci word. J. Integer Sequences 18, Article 15.3.4 (2015). Available at https://cs.uwaterloo.ca/journals/JIS/VOL18/Turek/turek3.html

Download references

Acknowledgments

We are very grateful to Amy Glen for her recommendations and advice. We thank Ondrej Turek and the referees for pointing out errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Shallit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mousavi, H., Shallit, J. (2015). Mechanical Proofs of Properties of the Tribonacci Word. In: Manea, F., Nowotka, D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science(), vol 9304. Springer, Cham. https://doi.org/10.1007/978-3-319-23660-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23660-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23659-9

  • Online ISBN: 978-3-319-23660-5

  • eBook Packages: Computer ScienceComputer Science (R0)