Abstract
We study the sequence of Fibonacci words and some of its derivatives with respect to their suffix array, inverse suffix array and Burrows-Wheeler transform based on the respective suffix array. We show that the suffix array is a rotation of its inverse under certain conditions, and that the factors of the LZ77 factorization of any Fibonacci word yield again similar characteristics.
Keywords
- Suffix Tree
- Suffix Array
- Reversed Rotation
- Common Prefix
- Homogenous Block
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options

References
Berstel, J., Savelli, A.: Crochemore factorization of sturmian and other infinite words. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 157–166. Springer, Heidelberg (2006)
Burrows, M., Wheeler, D.J., Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Digital Equipment Corporation, Technical report (1994)
Christodoulakis, M., Iliopoulos, C.S., Ardila, Y.J.P.: Simple algorithm for sorting the Fibonacci string rotations. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 218–225. Springer, Heidelberg (2006)
Droubay, X.: Palindromes in the Fibonacci word. Inf. Process. Lett. 55(4), 217–221 (1995)
Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)
Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014)
Gramss, T.: Entropy of the symbolic sequence for critical circle maps. Phys. Rev. E 50, 2616–2620 (1994)
Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a Fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)
Hoggatt Jr., V.E., Bicknell-Johnson, M.: Composites and primes among powers of Fibonacci numbers increased or decreased by one. Fibonacci Q. 15, 2 (1977)
Kärkkäinen, J.: Fast bwt in small space by blockwise suffix sorting. Theor. Comput. Sci. 387(3), 249–257 (2007)
de Luca, A.: A combinatorial property of the Fibonacci words. Inf. Process. Lett. 12(4), 193–195 (1981)
de Luca, A., de Luca, A.: Combinatorial properties of sturmian palindromes. Int. J. Found. Comput. Sci. 17(03), 557–573 (2006)
Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 1990, pp. 319–327, Philadelphia, PA, USA (1990)
Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian words. Inf. Process. Lett. 86(5), 241–246 (2003)
Monnerot-Dumaine, A.: The Fibonacci Word fractal, 24 pages, 25 figures, February 2009
Pirillo, G.: Fibonacci numbers and words. Discrete Math. 173(1–3), 197–207 (1997)
Rytter, W.: The structure of subword graphs and suffix trees of Fibonacci words. Theor. Comput. Sci. 363(2), 211–223 (2006)
Saari, K.: Periods of factors of the Fibonacci word. In: Proceedings of WORDS 2007. Institut de Mathematiques de Luminy (2007)
Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput. Syst. 41(4), 589–607 (2007)
Simpson, J., Puglisi, S.J.: Words with simple burrows-wheeler transforms. Electr. J. Comb. 15(1) (2008)
Wells, D.: Prime Numbers: The Most Mysterious Figures in Math. Wiley, Hoboken (2011)
Wen, Z.X., Wen, Z.Y.: Some properties of the singular words of the Fibonacci word. Eur. J. Comb. 15(6), 587–598 (1994)
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)
Acknowledgement
We are grateful to Gabriele Fici for helpful discussion, and to our student Sven Schrinner who discovered one rotation property while solving an exercise.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Köppl, D., I, T. (2015). Arithmetics on Suffix Arrays of Fibonacci Words. In: Manea, F., Nowotka, D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science(), vol 9304. Springer, Cham. https://doi.org/10.1007/978-3-319-23660-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-23660-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23659-9
Online ISBN: 978-3-319-23660-5
eBook Packages: Computer ScienceComputer Science (R0)