Skip to main content

Arithmetics on Suffix Arrays of Fibonacci Words

  • 420 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9304)

Abstract

We study the sequence of Fibonacci words and some of its derivatives with respect to their suffix array, inverse suffix array and Burrows-Wheeler transform based on the respective suffix array. We show that the suffix array is a rotation of its inverse under certain conditions, and that the factors of the LZ77 factorization of any Fibonacci word yield again similar characteristics.

Keywords

  • Suffix Tree
  • Suffix Array
  • Reversed Rotation
  • Common Prefix
  • Homogenous Block

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23660-5_12
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-23660-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Berstel, J., Savelli, A.: Crochemore factorization of sturmian and other infinite words. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 157–166. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  2. Burrows, M., Wheeler, D.J., Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Digital Equipment Corporation, Technical report (1994)

    Google Scholar 

  3. Christodoulakis, M., Iliopoulos, C.S., Ardila, Y.J.P.: Simple algorithm for sorting the Fibonacci string rotations. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 218–225. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  4. Droubay, X.: Palindromes in the Fibonacci word. Inf. Process. Lett. 55(4), 217–221 (1995)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)

    MathSciNet  CrossRef  Google Scholar 

  6. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  7. Gramss, T.: Entropy of the symbolic sequence for critical circle maps. Phys. Rev. E 50, 2616–2620 (1994)

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a Fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Hoggatt Jr., V.E., Bicknell-Johnson, M.: Composites and primes among powers of Fibonacci numbers increased or decreased by one. Fibonacci Q. 15, 2 (1977)

    Google Scholar 

  10. Kärkkäinen, J.: Fast bwt in small space by blockwise suffix sorting. Theor. Comput. Sci. 387(3), 249–257 (2007)

    CrossRef  MATH  Google Scholar 

  11. de Luca, A.: A combinatorial property of the Fibonacci words. Inf. Process. Lett. 12(4), 193–195 (1981)

    CrossRef  MATH  Google Scholar 

  12. de Luca, A., de Luca, A.: Combinatorial properties of sturmian palindromes. Int. J. Found. Comput. Sci. 17(03), 557–573 (2006)

    CrossRef  MATH  Google Scholar 

  13. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 1990, pp. 319–327, Philadelphia, PA, USA (1990)

    Google Scholar 

  14. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian words. Inf. Process. Lett. 86(5), 241–246 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Monnerot-Dumaine, A.: The Fibonacci Word fractal, 24 pages, 25 figures, February 2009

    Google Scholar 

  16. Pirillo, G.: Fibonacci numbers and words. Discrete Math. 173(1–3), 197–207 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Rytter, W.: The structure of subword graphs and suffix trees of Fibonacci words. Theor. Comput. Sci. 363(2), 211–223 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Saari, K.: Periods of factors of the Fibonacci word. In: Proceedings of WORDS 2007. Institut de Mathematiques de Luminy (2007)

    Google Scholar 

  19. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput. Syst. 41(4), 589–607 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. Simpson, J., Puglisi, S.J.: Words with simple burrows-wheeler transforms. Electr. J. Comb. 15(1) (2008)

    Google Scholar 

  21. Wells, D.: Prime Numbers: The Most Mysterious Figures in Math. Wiley, Hoboken (2011)

    Google Scholar 

  22. Wen, Z.X., Wen, Z.Y.: Some properties of the singular words of the Fibonacci word. Eur. J. Comb. 15(6), 587–598 (1994)

    CrossRef  MATH  Google Scholar 

  23. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Acknowledgement

We are grateful to Gabriele Fici for helpful discussion, and to our student Sven Schrinner who discovered one rotation property while solving an exercise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Köppl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Köppl, D., I, T. (2015). Arithmetics on Suffix Arrays of Fibonacci Words. In: Manea, F., Nowotka, D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science(), vol 9304. Springer, Cham. https://doi.org/10.1007/978-3-319-23660-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23660-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23659-9

  • Online ISBN: 978-3-319-23660-5

  • eBook Packages: Computer ScienceComputer Science (R0)