Skip to main content

Clear-Air Turbulence in a Changing Climate

Abstract

How might the processes generating clear-air turbulence change in a warmer world? We know that observations support an association between clear-air turbulence and shear instability. We also know that the upper atmospheric wind shears are changing in response to greenhouse gas forcing. In particular, theoretical reasoning and climate model simulations both suggest that the vertical shear in horizontal wind is increasing in magnitude at typical aircraft cruising altitudes in the middle latitudes, especially in the winter months in each hemisphere. This increased shearing implies that clear-air turbulence may itself be changing as a consequence of climate change. This chapter reviews the various lines of observational and model-based evidence for trends in clear-air turbulence, by analyzing data from turbulence encounters with aircraft, turbulence diagnosed from reanalysis datasets, passenger injuries caused by turbulence, and turbulence diagnosed from climate models. The possibility of anthropogenic trends in clear-air turbulence opens up a whole new field of academic study, which exists at the interface between the two scientific disciplines of aviation turbulence and climate change. We call for future work to improve our understanding of this poorly understood but potentially important impact of climate change.

Keywords

  • Atmospheric Turbulence
  • Lower Stratosphere
  • Historic Trend
  • Reanalysis Dataset
  • Federal Aviation Administration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23630-8_23
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-23630-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 23.1
Fig. 23.2
Fig. 23.3
Fig. 23.4
Fig. 23.5

References

  • Arblaster, J., Meehl, G.: Contributions of external forcings to southern annular mode trends. J. Climate 19, 2896–2905 (2006)

    CrossRef  Google Scholar 

  • Ballough, J.J.: Advisory Circular 120-88A: Preventing Injuries Caused by Turbulence. U.S. Department of Transportation Federal Aviation Administration, 19 Nov 2007 (2007)

    Google Scholar 

  • Bengtsson, L., Hagemann, S., Hodges, K.I.: Can climate trends be calculated from reanalysis data? J. Geophys. Res. 109, D11111 (2004)

    CrossRef  Google Scholar 

  • Bony, S., et al.: How well do we understand and evaluate climate change feedback processes? J. Climate 19, 2445–3482 (2006)

    CrossRef  Google Scholar 

  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., Thornton, P.: Carbon and other biogeochemical cycles. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., Wehner, M.: Long-term climate change: projections, commitments and irreversibility. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  • Delcambre, S.C., Lorenz, D.J., Vimont, D.J., Martin, J.E.: Diagnosing northern hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections. J. Climate 26, 4930–4946 (2013)

    CrossRef  Google Scholar 

  • Ellrod, G., Knapp, D.: An objective clear-air turbulence forecasting technique: verification and operational use. Weather Forecasting 7, 150–165 (1992)

    CrossRef  Google Scholar 

  • Fels, S.B., Mahlman, J.D., Schwarzkopf, M.D., Sinclair, R.W.: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. J. Atmos. Sci. 37, 2265–2297 (1980)

    CrossRef  Google Scholar 

  • Friedlingstein, P., et al.: Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Climate 19, 3337–3353 (2006)

    CrossRef  Google Scholar 

  • Gill, P.G.: Objective verification of World Area Forecast Centre clear air turbulence forecasts. Meteorol. Appl. 21, 3–11 (2014)

    CrossRef  Google Scholar 

  • Harrison, R.G., Hogan, R.J.: In situ atmospheric turbulence measurement using the terrestrial magnetic field—a compass for a radiosonde. J. Atmos. Oceanic Technol. 23, 517–523 (2006)

    CrossRef  Google Scholar 

  • Harrison, R.G., Rogers, G.W., Hogan, R.J.: A three-dimensional magnetometer for motion sensing of a balloon-carried atmospheric measurement package. Rev. Sci. Instrum. 78, 124501 (2007)

    CrossRef  Google Scholar 

  • Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, F.J., Dentener, E.J., Dlugokencky, D.R., Easterling, A., Kaplan, B.J., Soden, P.W., Thorne, Y., Wild, M., Zhai, P.M.: Observations: atmosphere and surface. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  • Hawkins, E., Sutton, R.: The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009)

    CrossRef  Google Scholar 

  • Jaeger, E.B., Sprenger, M.: A northern-hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 re-analysis data. J. Geophys. Res. 112, D20106 (2007)

    CrossRef  Google Scholar 

  • Joshi, M., et al.: Projections of when temperature change will exceed 2°C above pre-industrial levels. Nat. Clim. Change 1, 407–412 (2011)

    CrossRef  Google Scholar 

  • Kauffmann, P.: The business case for turbulence sensing systems in the US air transport sector. J. Air Transport Manage. 8, 99–107 (2002)

    CrossRef  Google Scholar 

  • Kim, J.-H., Chun, H.-Y.: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteorol. Climatol. 50(2), 311–324 (2011)

    CrossRef  Google Scholar 

  • Le Quéré, C., et al.: The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–186 (2013)

    CrossRef  Google Scholar 

  • Lorenz, D.J., DeWeaver, E.T.: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. 112, D10119 (2007)

    CrossRef  Google Scholar 

  • Marlton, G.J., Harrison, R.G., Nicoll, K.A., Williams, P.D.: A balloon-borne accelerometer technique for measuring atmospheric turbulence. Rev. Sci. Instrum. 86, 016109 (2015)

    CrossRef  Google Scholar 

  • Meinshausen, M., et al.: Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458, 1158–1162 (2009)

    CrossRef  Google Scholar 

  • Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H.: Anthropogenic and natural radiative forcing. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  • Schwartz, B.: The quantitative use of PIREPs in developing aviation weather guidance products. Weather Forecasting 11, 372–384 (1996)

    CrossRef  Google Scholar 

  • Sharman, R., Tebaldi, C., Wiener, G., Wolff, J.: An integrated approach to mid- and upper-level turbulence forecasting. Weather Forecasting 21(3), 268–287 (2006)

    CrossRef  Google Scholar 

  • Sharman, R.D., Cornman, L.B., Meymaris, G., Pearson, J., Farrar, T.: Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol. 53, 1416–1432 (2014)

    CrossRef  Google Scholar 

  • Taylor, P.C., Cai, M., Hu, A., Meehl, J., Washington, W., Zhang, G.J.: A decomposition of feedback contributions to polar warming amplification. J. Climate 26, 7023–7043 (2013)

    CrossRef  Google Scholar 

  • Van Vuuren, D.P., et al.: The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011)

    CrossRef  Google Scholar 

  • Watkins, C.D., Browning, K.A.: The detection of clear air turbulence by radar. Phys. Technol. 4, 28–61 (1973)

    CrossRef  Google Scholar 

  • Weaver, A., et al.: Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys. Res. Lett. 39, L20709 (2012)

    CrossRef  Google Scholar 

  • Williams, P.D., Joshi, M.M.: Intensification of winter transatlantic aviation turbulence in response to climate change. Nat. Clim. Change 3, 644–648 (2013)

    CrossRef  Google Scholar 

  • Wolff, J.K., Sharman, R.D.: Climatology of upper-level turbulence over the continental United States. J. Appl. Meteorol. Climatol. 47, 2198–2214 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Williams, P.D., Joshi, M.M. (2016). Clear-Air Turbulence in a Changing Climate. In: Sharman, R., Lane, T. (eds) Aviation Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-319-23630-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23630-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23629-2

  • Online ISBN: 978-3-319-23630-8

  • eBook Packages: EngineeringEngineering (R0)