Advertisement

Acoustic Waves

  • John Lekner
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 87)

Abstract

Section  1.4 introduced the basics of sound propagation in isotropic media, and some elementary properties of compressional wave reflection and transmission. An important aspect noted there was the possibility of zero reflection at a sharp boundary between two media at the Green’s angle, the acoustic analogue of the Brewster angle.

References

  1. Bergmann G (1946) The wave equation in a medium with a variable index of refraction. J Acoust Soc Am 17:329–333Google Scholar
  2. Brekhovskikh LM (1960) Waves in layered media. Academic Press, New YorkGoogle Scholar
  3. Chapman NR (1980) Low frequency bottom reflectivity measurements in the Tufts abyssal plain. In: Kuperman W, Jensen FB (eds) Bottom-interacting ocean acoustics. Plenum, New York, pp 193–207Google Scholar
  4. Gupta R (1965) “Reflection of plane waves from a linear transition layer in liquid media. Geophysics 30:122–132Google Scholar
  5. Hamilton EL (1980) Geoacoustic modeling of the seafloor. J Acoust Soc Am 68:1313–1340ADSCrossRefGoogle Scholar
  6. Heller GS (1953) Reflection of acoustic waves from an inhomogeneous fluid medium. J Acoust Soc Am 25:1104–1106ADSMathSciNetCrossRefGoogle Scholar
  7. Lekner J (1989) An upper bound on acoustic reflectivity; and the Rayleigh approximation. J Acoust Soc Am 86:2359–2362Google Scholar
  8. Lekner J (1990a) Matrix methods in reflection and transmission of compressional waves by stratified media. J Acoust Soc Am 87:2319–2324ADSCrossRefGoogle Scholar
  9. Lekner J (1990b) Reflection and transmission of compressional waves: some exact results. J Acoust Soc Am 87:2325–2331ADSCrossRefGoogle Scholar
  10. Lekner J (1990c) Reflection and transmission of compressional waves by a stratification with discontinuities in density and/or sound speed. J Acoust Soc Am 88:2876–2879ADSCrossRefGoogle Scholar
  11. Lekner J (2006a) Energy and momentum of sound pulses. Phys A 363:217–225CrossRefGoogle Scholar
  12. Lekner J (2006b) Localized oscillatory acoustic pulses. J Phys: Condens Matter 18:3031–3036ADSGoogle Scholar
  13. Lekner J (2006c) Angular momentum of sound pulses. J Phys: Condens Matter 18:6149–6158ADSGoogle Scholar
  14. Lekner J (2006d) Acoustic beams with angular momentum. J Acoust Soc Am 120:3475–3478ADSCrossRefGoogle Scholar
  15. Lekner J (2007) Acoustic beam invariants. Phys Rev E 75:036610 (6 pp)Google Scholar
  16. Morris HE (1970) Bottom-reflection-loss model with a velocity gradient. J Acoust Soc Am 48:1198–1202Google Scholar
  17. Olver FWJ, Maximon LC (2010) In: Olver FWJ et al (eds) Chapter 10 in NIST handbook of mathematical functions. NIST and CambridgeGoogle Scholar
  18. Peierls R (1983) The momentum of a sound pulse in a slightly dispersive medium. Proc Roy Soc A 390:1–12ADSCrossRefzbMATHGoogle Scholar
  19. Temme NM (2010) In: Olver FWJ et al (eds) Chapter 6 in NIST handbook of mathematical functions. NIST and CambridgeGoogle Scholar
  20. Zhang L, Marston PL (2011) Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys Rev E 84:06501(5 pp)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Victoria University of Wellington School of Chemical & Physical SciencesWellingtonNew Zealand

Personalised recommendations