Skip to main content

Absorption

  • Chapter
  • First Online:
Theory of Reflection

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 87))

  • 2472 Accesses

Abstract

This chapter deals with the effect of absorption on reflection properties. The absorption, or dissipation of electromagnetic energy within the medium, can be due to conductivity (as in metals, and in the ionosphere). However, good insulators can also be absorbers at high frequencies, where the electromagnetic field energy is converted to heat via molecular or electronic excitations. The absorption is included in the Maxwell equation (1.2) by allowing the dielectric function \( \varepsilon \) to take complex values. In general, the curl of B is the sum of terms proportional to \( \partial {\mathbf{E}}/\partial t \) and to the total current density. For non-magnetic media, and fields with the time variation \( {\text{e}}^{ - i\omega t} \), the form of (1.2) is retained, with the imaginary part of \( \varepsilon \) now proportional to the conductivity divided by the frequency (Born and Wolf 1970, Sect. 13.1). The simplest model for conducting media is that of an electron gas, with mean free time between collisions \( \tau \). This leads to the dielectric function (see for example Kittel 1966; Booker 1984; Budden 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelès F (1950) Recherches sur la propagation des ondes électromagnetiques sinusoidales dans les milieux stratifiés. Application aux couches minces. Annales de Physique 5:596–640

    MATH  Google Scholar 

  • Agranovich VM, Mills DL (eds) (1982) Surface polaritons: electromagnetic waves at surfaces and interfaces. North-Holland, Amsterdam; In: Abelès F, Lopez-Rios T (eds) Surface polaritons at metal surfaces and interfaces

    Google Scholar 

  • Allen TH (1976) Study of Al with a combined Auger electron spectrometer-ellipsometric system. J Vac Sci Technol 13:112–115

    Article  ADS  Google Scholar 

  • Azzam RMA (1985) Explicit equations for the polarizing angles of a high-reflectance substrate coated by a transparent thin film. J Opt Soc Amer A 2:480–482

    Article  ADS  Google Scholar 

  • Barlow HM, Brown J (1962) Radio surface waves. Oxford University Press, Oxford

    Google Scholar 

  • Bennett JM, Bennett HE (1978) Polarization, Chap. 10. In: Driscoll WG and Vaughan W (eds) Handbook of optics. McGraw Hill, New York

    Google Scholar 

  • Boardman AD (ed) (1982) Electromagnetic surface modes. Wiley, New York

    Google Scholar 

  • Born M and Wolf E (1970) Principles of optics, 4th edn. Pergamon, New York

    Google Scholar 

  • Booker H G (1984) Cold plasma waves. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Budden K G (1985) The propagation of radio waves. Cambridge University Press, Cambridge

    Google Scholar 

  • Burnstein E and DeMartini F (eds.) (1974) Polaritons. Pergamon, New York

    Google Scholar 

  • Ginzburg V L (1964) The propagation of electromagnetic waves in plasmas. Pergamon, Oxford

    Google Scholar 

  • Kitajima H, Fujita K, Cizmic H (1984) Zero reflection from a dielectric film on a metal substrate at oblique angles of incidence. Appl Opt 23:1937–1939

    Article  ADS  Google Scholar 

  • Kittel C (1966) Introduction to solid state physics, Wiley

    Google Scholar 

  • Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons by light, Zeit. für Naturforschung, 23a, 2135–2136

    Google Scholar 

  • Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media, Pergamon, Oxford

    Google Scholar 

  • McIntyre JDE (1976) Optical reflection spectroscopy of chemisorbed monolayers, Chap. 11, In: Seraphin (ed)

    Google Scholar 

  • Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeit. für Physik 216:398–410

    Article  ADS  Google Scholar 

  • Otto A (1976), Spectroscopy of surface polaritons by attenuated total reflection, Chap. 13, In: Seraphin (ed)

    Google Scholar 

  • Potter RF (1969) Pseudo-Brewster angle technique for determining the optical constants, Ch. 16. In: Nudelman S et al. (eds) Optical properties of solids. Springer, Berlin

    Google Scholar 

  • Ruiz-Urbieta M, Sparrow EM (1972) Reflection polarization by a transparent-film-absorbing substrate system. J Opt Soc Am 62:1188–1194

    Article  ADS  Google Scholar 

  • Seraphin BO (ed) (1976) Optical properties of solids: new developments, North Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lekner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lekner, J. (2016). Absorption. In: Theory of Reflection. Springer Series on Atomic, Optical, and Plasma Physics, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-23627-8_10

Download citation

Publish with us

Policies and ethics