Ahlswede R, Csiszàr I (1993) Common randomness in information theory and cryptography-part I: secret sharing. IEEE Trans Inf Theory 39(4):1121–1132
MATH
CrossRef
Google Scholar
Bassily R, Ekrem E, He X, Tekin E, Xie J, Bloch MR, Ulukus S, Yener A (2013) Cooperative security at the physical layer: a summary of recent advances. IEEE Signal Process Mag 30(5):16–28
CrossRef
Google Scholar
Bennett CH, Brassard G, Crépeau C, Maurer UM (1995) Generalized privacy amplification. IEEE Trans Inf Theory 50(2):394–400
Google Scholar
Chorti A, Perlaza SM, Han Z, Poor V (2013) On the resilience of wireless multiuser networks to passive and active eavesdroppers. IEEE J Sel Areas Commun 31(9):1850–1863
Google Scholar
Chorti A, Papadaki KP, Poor HV (2015) Optimal power allocation in block fading channels with confidential messages. IEEE Trans Wirel Commun (to appear)
Google Scholar
Csiszár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24(3):339–348
MATH
CrossRef
Google Scholar
Dean T, Goldsmith A (2013) Physical-layer cryptography through massive MIMO. arXiv:1310.1861 [cs.IT], submitted to IEEE Transactions on Information Theory
Ekrem E, Ulukus S (2011) The secrecy capacity of the Gaussian MIMO multi-receiver wiretap channel. IEEE Trans Inf Theory 57(4):2083–2114
MathSciNet
CrossRef
Google Scholar
Gopala P, Lai L, El-Gamal H (2008) On the secrecy capacity of fading channels. IEEE Trans Inf Theory 54(10):4687–4698
MATH
MathSciNet
CrossRef
Google Scholar
He X, Yener A (2010) Cooperation with an untrusted relay: a secrecy perspective. IEEE Trans Inf Theory 56(8):3807–3827
MathSciNet
CrossRef
Google Scholar
Katz J, Lindell Y (2007) Introduction to modern cryptography. CRC Press Inc., Boca Raton
Google Scholar
Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-part I: the MISOME wiretap channel. IEEE Trans Inf Theory 56(7):3088–3104
MathSciNet
CrossRef
Google Scholar
Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-part II: the MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532
MathSciNet
CrossRef
Google Scholar
Koyluoglu O, El Gamal H, Lai L, Poor HV (2011) Interference alignment for secrecy. IEEE Trans Inf Theory 57(6):3323–3332
CrossRef
Google Scholar
Lai L, El Gamal H, Poor HV (2009) Authentication over noisy channels. IEEE Trans Inf Theory 55(2):906–916
CrossRef
Google Scholar
Leung-Yan-Cheong SK, Hellman ME (1978) The Gaussian wire-tap channel. IEEE Trans Inf Theory 24(4):451–456
MATH
MathSciNet
CrossRef
Google Scholar
Liang Y, Poor HV (2008) Multiple-access channels with confidential messages. IEEE Trans Inf Theory 54(3):976–1002
MATH
MathSciNet
CrossRef
Google Scholar
Liang Y, Poor HV, Shamai S (2008) Secure communication over fading channels. IEEE Trans Inf Theory 54(6):2470–2492
MATH
MathSciNet
CrossRef
Google Scholar
Ling C, Luzzi L, Belfiore J-C, Stehle D (2014) Semantically secure lattice codes for the Gaussian wiretap channel. IEEE Trans Inf Theory 60(10):6399–6416
MathSciNet
CrossRef
Google Scholar
Liu R, Liu T, Poor HV, Shamai S (2013) New results on multiple-input multiple-output broadcast channels with confidential messages. IEEE Trans Inf Theory 59(3):1346–1359
MathSciNet
CrossRef
Google Scholar
Mahdavifar H, Vardy A (2011) Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans Inf Theory 57(10):6428–6442
MathSciNet
CrossRef
Google Scholar
Maurer UM (1993) Secret key agreement by public discussion from common information. IEEE Trans Inf Theory 39(3):733–742
MATH
CrossRef
Google Scholar
Maurer UM, Renner R, Wolf S (2007) Unbreakable keys from random noise, Security with Noisy Data. Springer, New York, pp 21–44
Google Scholar
Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972
MathSciNet
CrossRef
Google Scholar
Oggier F, Solé P, Belfiore J-C (2011) Lattice codes for the wiretap Gaussian channel: construction and analysis. arXiv:1103.4086v3 [cs.IT]
Oohama Y (2001) Coding for relay channels with confidential messages. In: Proceedings of the information theory workshop (ITW) (Cairns, Australia), pp 87–89
Google Scholar
Oohama Y (2007) Capacity theorems for relay channels with confidential messages. In: IEEE International Symposium on Information Theory—ISIT 2007 (Nice, France), pp 926–930
Google Scholar
Ozarow L, Wyner A (1985) Wire-tap channel II. Advances in Cryptology, Lecture Notes in Computer Science vol. 209. Springer, New York, pp 33–50
Google Scholar
Renna F, Laurenti N, Poor HV (2012) Physical layer secrecy for OFDM transmissions over fading channels. IEEE Trans Inf Forensics Secur 7(4):1354–1367
Google Scholar
Renna F, Laurenti N, Tomasin S, Baldi M, Maturo N, Bianchi M, Chiaraluce F, Bloch M (2013) Low-power secret-key agreement over OFDM, CoRR abs/1302.4767
Google Scholar
Saad W, Zhou X, Han Z, Poor HV (2014) On the physical layer security of backscatter wireless systems. IEEE Trans Wirel Commun 13(6):3442–3451
CrossRef
Google Scholar
Shannon C (1949) Communication theory of secrecy systems. Bell Syst Tech J 28:656–715
MATH
MathSciNet
CrossRef
Google Scholar
Tang X, Liu R, Spasojevic P, Poor HV (2011) Interference assisted secret communication. IEEE Trans Inf Theory 57(5):3153–3167
MathSciNet
CrossRef
Google Scholar
Thangaraj A, Dihidar S, Calderbank A, McLaughlin S, Merolla J-M (2007) Applications of LDPC codes to the wiretap channel. IEEE Trans Inf Theory 53(8):2933–2945
MathSciNet
CrossRef
Google Scholar
Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387
MATH
MathSciNet
CrossRef
Google Scholar
Xiangyun Z, Maham B, Hjorungnes A (2012) Pilot contamination for active eavesdropping. IEEE Trans Wirel Commun 11(3):903–907
CrossRef
Google Scholar
Yang S, Kobayashi M, Piantanida P, Shamai S (2013) Secrecy degrees of freedom of MIMO broadcast channels with delayed CSIT. IEEE Trans Inf Theory 59(9):5244–5256
MathSciNet
CrossRef
Google Scholar