Physical Layer Security: A Paradigm Shift in Data Confidentiality

  • Arsenia ChortiEmail author
  • Camilla Hollanti
  • Jean-Claude Belfiore
  • Harold Vincent Poor
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 358)


Physical layer security (PLS) draws on information theory to characterize the fundamental ability of the wireless physical layer to ensure data confidentiality. In the PLS framework it has been established that it is possible to simultaneously achieve reliability in transmitting messages to an intended destination and perfect secrecy of those messages with respect to an eavesdropper by using appropriate encoding schemes that exploit the noise and fading effects of wireless communication channels. Today, after more than 15 years of research in the area, PLS has the potential to provide novel security solutions that can be integrated into future generations of mobile communication systems. This chapter presents a tutorial on advances in this area. The treatment begins with a review of the fundamental PLS concepts and their corresponding historical background. Subsequently it reviews some of the most significant advances in coding theory and system design that offer a concrete platform for the realization of the promise of this approach in data confidentiality.


Orthogonal Frequency Division Multiplex Orthogonal Frequency Division Multiplex System Interference Alignment Relay Channel Massive MIMO 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support from the Academy of Finland (grants #276031, #282938, #283262) and Magnus Ehrnrooth Foundation is gratefully acknowledged. Part of this work was carried out under the European Science Foundation’s COST Action IC1104. This work was also supported by the U.S. National Science Foundation Grant CMMI-1435778.


  1. 1.
    Ahlswede R, Csiszàr I (1993) Common randomness in information theory and cryptography-part I: secret sharing. IEEE Trans Inf Theory 39(4):1121–1132zbMATHCrossRefGoogle Scholar
  2. 2.
    Bassily R, Ekrem E, He X, Tekin E, Xie J, Bloch MR, Ulukus S, Yener A (2013) Cooperative security at the physical layer: a summary of recent advances. IEEE Signal Process Mag 30(5):16–28CrossRefGoogle Scholar
  3. 3.
    Bennett CH, Brassard G, Crépeau C, Maurer UM (1995) Generalized privacy amplification. IEEE Trans Inf Theory 50(2):394–400Google Scholar
  4. 4.
    Chorti A, Perlaza SM, Han Z, Poor V (2013) On the resilience of wireless multiuser networks to passive and active eavesdroppers. IEEE J Sel Areas Commun 31(9):1850–1863Google Scholar
  5. 5.
    Chorti A, Papadaki KP, Poor HV (2015) Optimal power allocation in block fading channels with confidential messages. IEEE Trans Wirel Commun (to appear)Google Scholar
  6. 6.
    Csiszár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24(3):339–348zbMATHCrossRefGoogle Scholar
  7. 7.
    Dean T, Goldsmith A (2013) Physical-layer cryptography through massive MIMO. arXiv:1310.1861 [cs.IT], submitted to IEEE Transactions on Information Theory
  8. 8.
    Ekrem E, Ulukus S (2011) The secrecy capacity of the Gaussian MIMO multi-receiver wiretap channel. IEEE Trans Inf Theory 57(4):2083–2114MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gopala P, Lai L, El-Gamal H (2008) On the secrecy capacity of fading channels. IEEE Trans Inf Theory 54(10):4687–4698zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    He X, Yener A (2010) Cooperation with an untrusted relay: a secrecy perspective. IEEE Trans Inf Theory 56(8):3807–3827MathSciNetCrossRefGoogle Scholar
  11. 11.
    Katz J, Lindell Y (2007) Introduction to modern cryptography. CRC Press Inc., Boca RatonGoogle Scholar
  12. 12.
    Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-part I: the MISOME wiretap channel. IEEE Trans Inf Theory 56(7):3088–3104MathSciNetCrossRefGoogle Scholar
  13. 13.
    Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-part II: the MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532MathSciNetCrossRefGoogle Scholar
  14. 14.
    Koyluoglu O, El Gamal H, Lai L, Poor HV (2011) Interference alignment for secrecy. IEEE Trans Inf Theory 57(6):3323–3332CrossRefGoogle Scholar
  15. 15.
    Lai L, El Gamal H, Poor HV (2009) Authentication over noisy channels. IEEE Trans Inf Theory 55(2):906–916CrossRefGoogle Scholar
  16. 16.
    Leung-Yan-Cheong SK, Hellman ME (1978) The Gaussian wire-tap channel. IEEE Trans Inf Theory 24(4):451–456zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Liang Y, Poor HV (2008) Multiple-access channels with confidential messages. IEEE Trans Inf Theory 54(3):976–1002zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Liang Y, Poor HV, Shamai S (2008) Secure communication over fading channels. IEEE Trans Inf Theory 54(6):2470–2492zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Ling C, Luzzi L, Belfiore J-C, Stehle D (2014) Semantically secure lattice codes for the Gaussian wiretap channel. IEEE Trans Inf Theory 60(10):6399–6416MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu R, Liu T, Poor HV, Shamai S (2013) New results on multiple-input multiple-output broadcast channels with confidential messages. IEEE Trans Inf Theory 59(3):1346–1359MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mahdavifar H, Vardy A (2011) Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans Inf Theory 57(10):6428–6442MathSciNetCrossRefGoogle Scholar
  22. 22.
    Maurer UM (1993) Secret key agreement by public discussion from common information. IEEE Trans Inf Theory 39(3):733–742zbMATHCrossRefGoogle Scholar
  23. 23.
    Maurer UM, Renner R, Wolf S (2007) Unbreakable keys from random noise, Security with Noisy Data. Springer, New York, pp 21–44Google Scholar
  24. 24.
    Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972MathSciNetCrossRefGoogle Scholar
  25. 25.
    Oggier F, Solé P, Belfiore J-C (2011) Lattice codes for the wiretap Gaussian channel: construction and analysis. arXiv:1103.4086v3 [cs.IT]
  26. 26.
    Oohama Y (2001) Coding for relay channels with confidential messages. In: Proceedings of the information theory workshop (ITW) (Cairns, Australia), pp 87–89Google Scholar
  27. 27.
    Oohama Y (2007) Capacity theorems for relay channels with confidential messages. In: IEEE International Symposium on Information Theory—ISIT 2007 (Nice, France), pp 926–930Google Scholar
  28. 28.
    Ozarow L, Wyner A (1985) Wire-tap channel II. Advances in Cryptology, Lecture Notes in Computer Science vol. 209. Springer, New York, pp 33–50Google Scholar
  29. 29.
    Renna F, Laurenti N, Poor HV (2012) Physical layer secrecy for OFDM transmissions over fading channels. IEEE Trans Inf Forensics Secur 7(4):1354–1367Google Scholar
  30. 30.
    Renna F, Laurenti N, Tomasin S, Baldi M, Maturo N, Bianchi M, Chiaraluce F, Bloch M (2013) Low-power secret-key agreement over OFDM, CoRR abs/1302.4767Google Scholar
  31. 31.
    Saad W, Zhou X, Han Z, Poor HV (2014) On the physical layer security of backscatter wireless systems. IEEE Trans Wirel Commun 13(6):3442–3451CrossRefGoogle Scholar
  32. 32.
    Shannon C (1949) Communication theory of secrecy systems. Bell Syst Tech J 28:656–715zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Tang X, Liu R, Spasojevic P, Poor HV (2011) Interference assisted secret communication. IEEE Trans Inf Theory 57(5):3153–3167MathSciNetCrossRefGoogle Scholar
  34. 34.
    Thangaraj A, Dihidar S, Calderbank A, McLaughlin S, Merolla J-M (2007) Applications of LDPC codes to the wiretap channel. IEEE Trans Inf Theory 53(8):2933–2945MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Xiangyun Z, Maham B, Hjorungnes A (2012) Pilot contamination for active eavesdropping. IEEE Trans Wirel Commun 11(3):903–907CrossRefGoogle Scholar
  37. 37.
    Yang S, Kobayashi M, Piantanida P, Shamai S (2013) Secrecy degrees of freedom of MIMO broadcast channels with delayed CSIT. IEEE Trans Inf Theory 59(9):5244–5256MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arsenia Chorti
    • 1
    Email author
  • Camilla Hollanti
    • 2
  • Jean-Claude Belfiore
    • 3
  • Harold Vincent Poor
    • 4
  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
  2. 2.Department of Mathematics and Systems AnalysisAalto University School of ScienceAaltoFinland
  3. 3.Department of Communications and ElectronicsTelecom ParisTechParis Cedex 13France
  4. 4.Department of Electrical EngineeringEQUAD, Princeton UniversityPrincetonUSA

Personalised recommendations