Skip to main content

Genetic, Biochemical, and Structural Analyses of Bacterial Surface Polysaccharides

  • Chapter
Prokaryotic Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 883))

Abstract

Surface polysaccharides are an often essential component of the outer surface of bacteria. They may serve to protect organisms from harsh environmental conditions and to increase virulence. The focus of this review will be to introduce polysaccharide biosynthesis and export from the cell, and the associated techniques used to determine these glycostructures. Protein interactions and proteomics will then be discussed while introducing systems biology approaches used to determine protein–protein and protein–polysaccharide interactions. The final section will address related screening methods used to study gene regulation in bacteria relating to polysaccharide gene clusters and their associated regulators. The goal of this review will be to highlight key studies that have increased our knowledge of glycobiology and discuss novel methods that examine this field at the cellular level using systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali T, Urbina F, Weintraub A, Widmalm G (2005) Structural studies of the O-antigenic polysaccharides from the enteroaggregative Escherichia coli strain 522/C1 and the international type strain from Escherichia coli O 178. Carbohydr Res 340(12):2010–2014. doi:10.1016/j.carres.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  • Andreishcheva EN, Vann WF (2006) Gene products required for de novo synthesis of polysialic acid in Escherichia coli K1. J Bacteriol 188(5):1786–1797. doi:10.1128/JB.188.5.1786-1797.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bailey MJ, Hughes C, Koronakis V (1996) Increased distal gene transcription by the elongation factor RfaH, a specialized homologue of NusG. Mol Microbiol 22(4):729–737

    Article  CAS  PubMed  Google Scholar 

  • Banoub JH, El Aneed A, Cohen AM, Joly N (2010) Structural investigation of bacterial lipopolysaccharides by mass spectrometry and tandem mass spectrometry. Mass Spectrom Rev 29(4):606–650. doi:10.1002/mas.20258

    CAS  PubMed  Google Scholar 

  • Barry GT (1958) Colominic acid, a polymer of N-acetylneuraminic acid. J Exp Med 107(4): 507–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beiser SM, Davis BD (1957) Mucoid mutants of Escherichia coli. J Bacteriol 74(3):303–307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bell CD, Kovacs K, Horvath E, Rotondo F (2001) Histologic, immunohistochemical, and ultrastructural findings in a case of minocycline-associated “black thyroid”. Endocr Pathol 12(4):443–451

    Article  CAS  PubMed  Google Scholar 

  • Bliss JM, Silver RP (1996) Coating the surface: a model for expression of capsular polysialic acid in Escherichia coli K1. Mol Microbiol 21(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Brisse S, Issenhuth-Jeanjean S, Grimont PA (2004) Molecular serotyping of Klebsiella species isolates by restriction of the amplified capsular antigen gene cluster. J Clin Microbiol 42(8):3388–3398. doi:10.1128/JCM.42.8.3388-3398.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown S, Santa Maria JP Jr, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336. doi:10.1146/annurev-micro-092412-155620

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238. doi:10.1093/nar/gkn663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338(23):2431–2447

    Article  CAS  PubMed  Google Scholar 

  • Chin JW, Schultz PG (2002) In vivo photocrosslinking with unnatural amino acid mutagenesis. Chembiochem 3(11):1135–1137. doi:10.1002/1439-7633(20021104)3:11%3C1135::AID-CBIC1135%3E3.0.CO;2-M

    Google Scholar 

  • Chin JW, Martin AB, King DS, Wang L, Schultz PG (2002a) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci U S A 99(17): 11020–11024. doi:10.1073/pnas.172226299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG (2002b) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124(31):9026–9027

    Article  CAS  PubMed  Google Scholar 

  • Clarke BR, Cuthbertson L, Whitfield C (2004) Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J Biol Chem 279(34):35709–35718. doi:10.1074/jbc.M404738200

    Article  CAS  PubMed  Google Scholar 

  • Clarke BR, Greenfield LK, Bouwman C, Whitfield C (2009) Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway. J Biol Chem 284(44):30662–30672. doi:10.1074/jbc.M109.052878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins RF, Beis K, Clarke BR, Ford RC, Hulley M, Naismith JH, Whitfield C (2006) Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J Biol Chem 281(4):2144–2150. doi:10.1074/jbc.M508078200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins RF, Beis K, Dong C, Botting CH, McDonnell C, Ford RC, Clarke BR, Whitfield C, Naismith JH (2007) The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. Proc Natl Acad Sci U S A 104(7):2390–2395. doi:10.1073/pnas.0607763104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cuthbertson L, Powers J, Whitfield C (2005) The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J Biol Chem 280(34):30310–30319. doi:10.1074/jbc.M504371200

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson L, Kimber MS, Whitfield C (2007) Substrate binding by a bacterial ABC transporter involved in polysaccharide export. Proc Natl Acad Sci U S A 104(49):19529–19534. doi:10.1073/pnas.0705709104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 73(1): 155–177. doi:10.1128/MMBR.00024-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ, Siu KW (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4(2):377–386. doi:10.1021/pr049821j

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Beis K, Nesper J, Brunkan-Lamontagne AL, Clarke BR, Whitfield C, Naismith JH (2006) Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444(7116):226–229. doi:10.1038/nature05267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorman G, Prestwich GD (1994) Benzophenone photophores in biochemistry. Biochemistry 33(19):5661–5673

    Article  CAS  PubMed  Google Scholar 

  • Drummelsmith J, Whitfield C (1999) Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a:K30). Mol Microbiol 31(5):1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Duguid JP, Wilkinson JF (1953) The influence of cultural conditions on polysaccharide production by Aerobacter aerogenes. J Gen Microbiol 9(2):174–189

    Article  CAS  PubMed  Google Scholar 

  • Finke A, Bronner D, Nikolaev AV, Jann B, Jann K (1991) Biosynthesis of the Escherichia coli K5 polysaccharide, a representative of group II capsular polysaccharides: polymerization in vitro and characterization of the product. J Bacteriol 173(13):4088–4094

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer W, Schmidt MA, Jann B, Jann K (1982) Structure of the Escherichia coli K2 capsular antigen. Stereochemical configuration of the glycerophosphate and distribution of galactopyranosyl and galactofuranosyl residues. Biochemistry 21(6):1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Freinkman E, Chng SS, Kahne D (2011) The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Proc Natl Acad Sci U S A 108(6):2486–2491. doi:10.1073/pnas.1015617108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frosch M, Muller A (1993) Phospholipid substitution of capsular polysaccharides and mechanisms of capsule formation in Neisseria meningitidis. Mol Microbiol 8(3):483–493

    Article  CAS  PubMed  Google Scholar 

  • Gotschlich EC, Fraser BA, Nishimura O, Robbins JB, Liu TY (1981) Lipid on capsular polysaccharides of gram-negative bacteria. J Biol Chem 256(17):8915–8921

    CAS  PubMed  Google Scholar 

  • Greenfield LK, Richards MR, Li J, Wakarchuk WW, Lowary TL, Whitfield C (2012) Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases. J Biol Chem 287(42):35078–35091. doi:10.1074/jbc.M112.401000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan S, Clarke AJ, Whitfield C (2001) Functional analysis of the galactosyltransferases required for biosynthesis of D-galactan I, a component of the lipopolysaccharide O1 antigen of Klebsiella pneumoniae. J Bacteriol 183(11):3318–3327. doi:10.1128/JB.183.11.3318-3327.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999. doi:10.1038/13690

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs DE, Yethon JA, Whitfield C (1998) Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30(2):221–232

    Article  CAS  PubMed  Google Scholar 

  • Howard MD, Cox AD, Weiser JN, Schurig GG, Inzana TJ (2000) Antigenic diversity of Haemophilus somnus lipooligosaccharide: phase-variable accessibility of the phosphorylcholine epitope. J Clin Microbiol 38(12):4412–4419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Irnov I, Winkler WC (2010) A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales. Mol Microbiol 76(3):559–575. doi:10.1111/j.1365-2958.2010.07131.x

    Article  CAS  PubMed  Google Scholar 

  • Jann K, Jann B (1990) Structure and biosynthesis of the capsular antigens of Escherichia coli. In: Jann K, Jann B (eds) Bacterial capsules, vol 150. Current topics in microbiology and immunology. Springer Verlag, Berlin, pp 19–42

    Google Scholar 

  • Jimenez N, Senchenkova SN, Knirel YA, Pieretti G, Corsaro MM, Aquilini E, Regue M, Merino S, Tomas JM (2012) Effects of lipopolysaccharide biosynthesis mutations on K1 polysaccharide association with the Escherichia coli cell surface. J Bacteriol 194(13): 3356–3367. doi:10.1128/JB.00329-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95(10):5752–5756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karimova G, Ullmann A, Ladant D (2000) A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. Methods Enzymol 328:59–73

    Article  CAS  PubMed  Google Scholar 

  • Kauer JC, Erickson-Viitanen S, Wolfe HR Jr, DeGrado WF (1986) p-Benzoyl-L-phenylalanine, a new photoreactive amino acid. Photolabeling of calmodulin with a synthetic calmodulin-binding peptide. J Biol Chem 261(23):10695–10700

    CAS  PubMed  Google Scholar 

  • Kido N, Kobayashi H (2000) A single amino acid substitution in a mannosyltransferase, WbdA, converts the Escherichia coli O9 polysaccharide into O9a: generation of a new O-serotype group. J Bacteriol 182(9):2567–2573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kido N, Torgov VI, Sugiyama T, Uchiya K, Sugihara H, Komatsu T, Kato N, Jann K (1995) Expression of the O9 polysaccharide of Escherichia coli: sequencing of the E. coli O9 rfb gene cluster, characterization of mannosyl transferases, and evidence for an ATP-binding cassette transport system. J Bacteriol 177(8):2178–2187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kos V, Whitfield C (2010) A membrane-located glycosyltransferase complex required for biosynthesis of the D-galactan I lipopolysaccharide O antigen in Klebsiella pneumoniae. J Biol Chem 285(25):19668–19687. doi:10.1074/jbc.M110.122598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kos V, Cuthbertson L, Whitfield C (2009) The Klebsiella pneumoniae O2a antigen defines a second mechanism for O antigen ATP-binding cassette transporters. J Biol Chem 284(5):2947–2956. doi:10.1074/jbc.M807213200

    Article  CAS  PubMed  Google Scholar 

  • Ladant D (1988) Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J Biol Chem 263(6):2612–2618

    CAS  PubMed  Google Scholar 

  • Ladant D, Karimova G (2000) Genetic systems for analyzing protein-protein interactions in bacteria. Res Microbiol 151(9):711–720

    Article  CAS  PubMed  Google Scholar 

  • Ladant D, Michelson S, Sarfati R, Gilles AM, Predeleanu R, Barzu O (1989) Characterization of the calmodulin-binding and of the catalytic domains of Bordetella pertussis adenylate cyclase. J Biol Chem 264(7):4015–4020

    CAS  PubMed  Google Scholar 

  • Lindenberg B (1998) Bacterial polysaccharides: components. In: Dimitriu S (ed) Polysaccharides – structural diversity and functional versatility. Marcel Dekker, New York

    Google Scholar 

  • Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444. doi:10.1146/annurev.biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L (2008) Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 32(4):627–653. doi:10.1111/j.1574-6976.2008.00114.x

    Article  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490–D495. doi:10.1093/nar/gkt1178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacLachlan PR, Keenleyside WJ, Dodgson C, Whitfield C (1993) Formation of the K30 (group I) capsule in Escherichia coli O9:K30 does not require attachment to lipopolysaccharide lipid A-core. J Bacteriol 175(23):7515–7522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Markovitz A (1964) Regulatory mechanisms for synthesis of capsular polysaccharide in mucoid mutants of Escherichia coli K12. Proc Natl Acad Sci U S A 51:239–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGuire EJ, Binkley SB (1964) The structure and chemistry of colominic acid. Biochemistry 3:247–251

    Article  CAS  PubMed  Google Scholar 

  • Moon K, Six DA, Lee HJ, Raetz CR, Gottesman S (2013) Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Mol Microbiol 89(1):52–64. doi:10.1111/mmi.12257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186. doi:10.1038/nature11744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muszynski A, Rabsztyn K, Knapska K, Duda KA, Duda-Grychtol K, Kasperkiewicz K, Radziejewska-Lebrecht J, Holst O, Skurnik M (2013) Enterobacterial common antigen and O-specific polysaccharide coexist in the lipopolysaccharide of Yersinia enterocolitica serotype O: 3. Microbiology 159(Pt 8):1782–1793. doi:10.1099/mic.0.066662-0

    Article  CAS  PubMed  Google Scholar 

  • Nakayasu ES, Tempel R, Cambronne XA, Petyuk VA, Jones MB, Gritsenko MA, Monroe ME, Yang F, Smith RD, Adkins JN, Heffron F (2013) Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection. Mol Cell Proteomics 12(11):3297–3309. doi:10.1074/mcp.M113.029850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narita S, Tokuda H (2009) Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. FEBS Lett 583(13): 2160–2164. doi:10.1016/j.febslet.2009.05.051

    Article  CAS  PubMed  Google Scholar 

  • Nesper J, Hill CM, Paiment A, Harauz G, Beis K, Naismith JH, Whitfield C (2003) Translocation of group 1 capsular polysaccharide in Escherichia coli serotype K30. Structural and functional analysis of the outer membrane lipoprotein Wza. J Biol Chem 278(50):49763–49772. doi:10.1074/jbc.M308775200

    Article  CAS  PubMed  Google Scholar 

  • Nickerson NN, Mainprize IL, Hampton L, Jones ML, Naismith JH, Whitfield C (2014) Trapped translocation intermediates establish the route for export of capsular polysaccharides across Escherichia coli outer membranes. Proc Natl Acad Sci USA 111(22):8203–8208. doi:10.1073?pnas.1400341111

    Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okuda S, Freinkman E, Kahne D (2012) Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338(6111):1214–1217. doi:10.1126/science.1228984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, Assefa SA, He M, Croucher NJ, Pickard DJ, Maskell DJ, Parkhill J, Choudhary J, Thomson NR, Dougan G (2009) A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5(7):e1000569. doi:10.1371/journal.pgen.1000569

    Article  PubMed Central  PubMed  Google Scholar 

  • Perkins TT, Davies MR, Klemm EJ, Rowley G, Wileman T, James K, Keane T, Maskell D, Hinton JC, Dougan G, Kingsley RA (2013) ChIP-seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization. Mol Microbiol 87(3):526–538. doi:10.1111/mmi.12111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polissi A, Sperandeo P (2014) The lipopolysaccharide export pathway in Escherichia coli: structure, organization and regulated assembly of the Lpt machinery. Mar Drugs 12(2): 1023–1042. doi:10.3390/md12021023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. doi:10.1146/annurev.biochem.71.110601.135414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahn A, Whitfield C (2003) Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol Microbiol 47(4):1045–1060

    Article  CAS  PubMed  Google Scholar 

  • Reid AN, Whitfield C (2005) functional analysis of conserved gene products involved in assembly of Escherichia coli capsules and exopolysaccharides: evidence for molecular recognition between Wza and Wzc for colanic acid biosynthesis. J Bacteriol 187(15):5470–5481. doi:10.1128/JB.187.15.5470-5481.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruiz N, Gronenberg LS, Kahne D, Silhavy TJ (2008) Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 105(14):5537–5542. doi:10.1073/pnas.0801196105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruiz N, Kahne D, Silhavy TJ (2009) Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol 7(9):677–683. doi:10.1038/nrmicro2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt MA, Jann K (1982) Phospholipid substitution of capsular (K) polysaccharide antigens from Escherichia coli causing extraintestinal infections. FEMS Microbiol Lett 14:69–74

    Article  CAS  Google Scholar 

  • Shendure J (2008) The beginning of the end for microarrays? Nat Methods 5(7):585–587. doi:10.1038/nmeth0708-585

    Article  CAS  PubMed  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. doi:10.1101/cshperspect.a000414

    Article  PubMed Central  PubMed  Google Scholar 

  • Sozhamannan S, Yildiz F (2010) Diversity and genetic basis of polysaccharide biosynthesis in Vibrio cholerae. In: St. Georgiev V (ed) Epidemiological and molecular aspects on cholera, infectious disease. Infectious disease series. Springer, New York, pp 129–160

    Google Scholar 

  • Sperandeo P, Cescutti R, Villa R, Di Benedetto C, Candia D, Deho G, Polissi A (2007) Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J Bacteriol 189(1):244–253. doi:10.1128/JB.01126-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sperandeo P, Lau FK, Carpentieri A, De Castro C, Molinaro A, Deho G, Silhavy TJ, Polissi A (2008) Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol 190(13):4460–4469. doi:10.1128/JB.00270-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sperandeo P, Villa R, Martorana AM, Samalikova M, Grandori R, Deho G, Polissi A (2011) New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA-LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. J Bacteriol 193(5):1042–1053. doi:10.1128/JB.01037-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steen JA, Steen JA, Harrison P, Seemann T, Wilkie I, Harper M, Adler B, Boyce JD (2010) Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathog 6(2):e1000750. doi:10.1371/journal.ppat.1000750

    Article  PubMed Central  PubMed  Google Scholar 

  • Steenbergen SM, Vimr ER (2008) Biosynthesis of the Escherichia coli K1 group 2 polysialic acid capsule occurs within a protected cytoplasmic compartment. Mol Microbiol 68(5):1252–1267. doi:10.1111/j.1365-2958.2008.06231.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steenbergen SM, Wrona TJ, Vimr ER (1992) Functional analysis of the sialyltransferase complexes in Escherichia coli K1 and K92. J Bacteriol 174(4):1099–1108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10(2):123–136. doi:10.1038/nrmicro2677

    CAS  Google Scholar 

  • Tzeng YL, Datta AK, Strole CA, Lobritz MA, Carlson RW, Stephens DS (2005) Translocation and surface expression of lipidated serogroup B capsular polysaccharide in Neisseria meningitidis. Infect Immun 73(3):1491–1505. doi:10.1128/IAI.73.3.1491-1505.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ullmann A, Danchin A (1983) Role of cyclic AMP in bacteria. In: Greengard P, Robinson GA (eds) Advances in cyclic nucleotide research, vol 15. Raven Press, New York, pp 1–53

    Google Scholar 

  • Vimr ER, Steenbergen SM (2009) Early molecular-recognition events in the synthesis and export of group 2 capsular polysaccharides. Microbiology 155(Pt 1):9–15. doi:10.1099/mic.0.023564-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292(5516):498–500. doi:10.1126/science.1060077

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Brock A, Schultz PG (2002) Adding L-3-(2-Naphthyl)alanine to the genetic code of E. coli. J Am Chem Soc 124(9):1836–1837

    Article  CAS  PubMed  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68. doi:10.1146/annurev.biochem.75.103004.142545

    Article  CAS  PubMed  Google Scholar 

  • Whitfield C, Perry MB, MacLean LL, Yu SH (1992) Structural analysis of the O-antigen side chain polysaccharides in the lipopolysaccharides of Klebsiella serotypes O2(2a), O2(2a,2b), and O2(2a,2c). J Bacteriol 174(15):4913–4919

    PubMed Central  CAS  PubMed  Google Scholar 

  • Willis LM, Whitfield C (2013) KpsC and KpsS are retaining 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferases involved in synthesis of bacterial capsules. Proc Natl Acad Sci U S A 110(51):20753–20758. doi:10.1073/pnas.1312637110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willis LM, Stupak J, Richards MR, Lowary TL, Li J, Whitfield C (2013) Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proc Natl Acad Sci U S A 110(19):7868–7873. doi:10.1073/pnas.1222317110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winter SE, Winter MG, Thiennimitr P, Gerriets VA, Nuccio SP, Russmann H, Baumler AJ (2009) The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol 74(1):175–193. doi:10.1111/j.1365-2958.2009.06859.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winter SE, Winter MG, Godinez I, Yang HJ, Russmann H, Andrews-Polymenis HL, Baumler AJ (2010) A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella. PLoS Pathog 6(8):e1001060. doi:10.1371/journal.ppat.1001060

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie J, Schultz PG (2006) A chemical toolkit for proteins—an expanded genetic code. Nat Rev Mol Cell Biol 7(10):775–782. doi:10.1038/nrm2005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chris Whitfield, Bradley Clarke, and other members of the Whitfield lab for helpful discussions during the writing of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin A. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cooper, C.A., Mainprize, I.L., Nickerson, N.N. (2015). Genetic, Biochemical, and Structural Analyses of Bacterial Surface Polysaccharides. In: Krogan, PhD, N., Babu, PhD, M. (eds) Prokaryotic Systems Biology. Advances in Experimental Medicine and Biology, vol 883. Springer, Cham. https://doi.org/10.1007/978-3-319-23603-2_16

Download citation

Publish with us

Policies and ethics