Skip to main content

Nonlinear Process Monitoring Using Genetic Algorithms

  • Conference paper
  • First Online:
  • 2705 Accesses

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This paper suggests a new approach for fault detection using Genetic Algorithms (GAs). GAs are used to find the principal curve that summarize the data. The principal curve is a generation of linear Principal Component Analysis (PCA). Introduced by Hastie as a parametric curve, the original definition is based on the self-consistency property. The Hastie’s theory encloses weaknesses in case of complex data structures or data with intersections. The existing principal curves methods employ the first component of the data as an initial estimation of principal curve that passes satisfactorily through the middle of data. However the needing of an initial line is the major inconvenient of this approach. In this work, we extend this problem in two ways. First, we introduce a new method based on GAs to find the principal curve. Second, potential application of principal curves in fault detection is proposed. An example is presented to prove the efficiency of the proposed algorithm to fault detection of nonlinear process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nabli L (2010) Contribution à la conduite des systèmes de production par l’utilisation des techniques de l’intelligence artificielle. Habilitation universitaire, Université de Monastir, ENIM

    Google Scholar 

  2. Hastie T, Stuetzel W (1989) Principal curves. J Am Stat Assoc 84:502–512

    Article  MATH  Google Scholar 

  3. Delicado P, Huerta M (2003) Principal curves of oriented points: theoretical and computational improvements. Comput Stat 18:293–315

    Google Scholar 

  4. Kègl B, Krzyzak A (2002) Piecewise linear skeletonization using principal curves. IEEE Trans Pattern Anal Mach Intell 24:59–74

    Google Scholar 

  5. Tibshirani R (1992) Principal curves revisited. Stat Comput 2:183–190

    Article  Google Scholar 

  6. Kègl B, Krzyzak A, Linder T (2000) Learning and design of principal curves. IEEE Trans Pattern Anal Mach Intell 22:281–297

    Article  Google Scholar 

  7. Banfield JD, Raftery AE (1992) Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. J Am Stat Assoc 87:7–16

    Google Scholar 

  8. Chang K, Ghosh J (2001) A unified model for probabilistic principal surfaces. IEEE Trans Pattern Anal Mach Intell 23(1)

    Google Scholar 

  9. Einbeck J, Tutz G, Evers L (2005) Local principal curves. Stat Comput 15:301–313

    Google Scholar 

  10. Verbeek JJ, Vlassis N, Krose B (2002) A k-segments algorithm for finding principal curves. Pattern Recogn Lett 23:1009–1017

    Google Scholar 

  11. Goldberg D, Korb B, Deb K (1989) Messy genetic algorithms: motivation, analysis, and first results. J Complex Syst 3:493–530

    Google Scholar 

  12. Bies R, Muldoon F, Pollock G, Manuck S, Smith M (2006) A genetic algorithm-based hybrid machine learning approach to model selection. J Pharmacokinet Pharmacodyn 33:196–221

    Google Scholar 

  13. Cha SH, Tappert C (2009) A genetic algorithm for constructing compact binary decision trees. J Pattern Recogn Res 4:1–13

    Google Scholar 

  14. Akbari Z (2011) A multilevel evolutionary algorithm for optimizing numerical functions. Int J Ind Eng Comput 2:419–430

    Google Scholar 

  15. Zhang J, Chung H, Lo W (2007) Clustering-based adaptive crossover and mutation probabilities for genetic algorithms. IEEE Trans Evol Comput 11:326–335

    Google Scholar 

  16. Najeh T, Nabli L (2012) Development of a structuring residuals method for diagnostic by PCA-based genetic algorithms. In: The proceeding of 2nd international conference on communications, computing and control applications (CCCA), pp. 1–6, Marseilles, 6–8 Dec 2012

    Google Scholar 

  17. Nabli L, Ouni K, Haykel HS (2008) Approche Multi agents pour la surveillance indirecte d’un système de production par l’analyse en composantes principales. la Conférence Internationale Francophone d’Automatique, CIFA, Roumanie

    Google Scholar 

  18. Nabli L, Toguyéni AKA, Craye E (2000) Méthode de surveillance indirecte d’un système de production par la logique floue. CIFA, Lille

    Google Scholar 

  19. Kresta JV, MacGregor JF, Marlin TE (1991) Multivariate statistical monitoring of process operating performance. Can J Chem Eng 69:34–47

    Google Scholar 

  20. Nabli L, Ouni K (2008) The supervision indirect of a system of production by the principal component analysis and average dynamic of the metrics. Int Rev Autom Control (IREACO) 1(4):560–567

    Google Scholar 

  21. Delicado P (2001) Another look at principal curves and surface. J Multi-variate Anal 7:84–116

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfik Najeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Najeh, T., Telmoudi, A.J., Nabli, L. (2016). Nonlinear Process Monitoring Using Genetic Algorithms. In: Kumar, U., Ahmadi, A., Verma, A., Varde, P. (eds) Current Trends in Reliability, Availability, Maintainability and Safety. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23597-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23597-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23596-7

  • Online ISBN: 978-3-319-23597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics