Abstract
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse structure of the learned dictionary over the a-priori dictionary, and a sparse structure of the data over the learned dictionary. We apply the hierarchical sparse dictionary learning approach on both synthetic data and real-world high-dimensional time series data. The experimental results demonstrate that the hierarchical sparse dictionary learning approach reduces overfitting and enhances the generalizability of the learned dictionary. Moreover, the learned dictionary is optimized to adapt to the given data and result in a more compact dictionary and a more robust sparse representation. The experimental results on real datasets demonstrate that the proposed approach can successfully characterize the heterogeneity of the given data, and leads to a better and more robust dictionary.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, Curran Associates Inc., pp. 1033–1040 (2008)
Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54, 4311–4322 (2006)
Elad, M.: Sparse and redundant representation modeling: What next? IEEE Signal Processing Letters 19, 922–928 (2012)
Bian, X., Krim, H.: Robust Subspace Recovery via Bi-Sparsity Pursuit (2014). ArXiv e-prints
Soltanolkotabi, M., Elhamifar, E., Candes, E.: Robust subspace clustering (2013). arXiv preprint arXiv:1301.2603
Huang, K., Aviyente, S.: Sparse representation for signal classification. In: Advances in neural information processing systems, pp. 609–616 (2006)
Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15, 3736–3745 (2006)
Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE Transactions on Signal Processing 58, 1553–1564 (2010)
Mallat, S.: A wavelet tour of signal processing. Academic press (1999)
Candes, E.J., Donoho, D.L.: Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Technical report, DTIC Document (2000)
Yi, S., Labate, D., Easley, G.R., Krim, H.: A shearlet approach to edge analysis and detection. IEEE Transactions on Image Processing 18, 929–941 (2009)
Labate, D., Lim, W.Q., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. In: Optics & Photonics 2005, International Society for Optics and Photonics, pp. 59140U–59140U (2005)
Eldar, Y.C., Kutyniok, G.: Compressed sensing: theory and applications. Cambridge University Press (2012)
Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on pure and applied mathematics 59, 1207–1223 (2006)
Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning, 689–696. ACM (2009)
Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural computation 15, 349–396 (2003)
Elad, M., Figueiredo, M.A., Ma, Y.: On the role of sparse and redundant representations in image processing. Proceedings of the IEEE 98, 972–982 (2010)
Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area v2. In: Advances in neural information processing systems, pp. 873–880 (2007)
Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning 2, 1–127 (2009)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2, 183–202 (2009)
Rubinstein, R., Faktor, T., Elad, M.: K-svd dictionary-learning for the analysis sparse model. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5405–5408. IEEE (2012)
Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for hierarchical sparse coding. The Journal of Machine Learning Research 12, 2297–2334 (2011)
Jenatton, R., Audibert, J.Y., Bach, F.: Structured variable selection with sparsity-inducing norms. The Journal of Machine Learning Research 12, 2777–2824 (2011)
Bradley, D.M., Bagnell, J.A.: Differential sparse coding (2008)
Zibulevsky, M., Pearlmutter, B.: Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13, 863–882 (2001)
Li, Y., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source separation. Neural Computation 16, 1193–1234 (2004)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856. MIT Press (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bian, X., Ning, X., Jiang, G. (2015). Hierarchical Sparse Dictionary Learning. In: Appice, A., Rodrigues, P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2015. Lecture Notes in Computer Science(), vol 9285. Springer, Cham. https://doi.org/10.1007/978-3-319-23525-7_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-23525-7_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23524-0
Online ISBN: 978-3-319-23525-7
eBook Packages: Computer ScienceComputer Science (R0)