Discovering Audience Groups and Group-Specific Influencers

  • Shuyang Lin
  • Qingbo Hu
  • Jingyuan Zhang
  • Philip S. Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9285)


Recently, user influence in social networks has been studied extensively. Many applications related to social influence depend on quantifying influence and finding the most influential users of a social network. Most existing work studies the global influence of users, i.e. the aggregated influence that a user has on the entire network. It is often overlooked that users may be significantly more influential to some audience groups than others. In this paper, we propose AudClus, a method to detect audience groups and identify group-specific influencers simultaneously. With extensive experiments on real data, we show that AudClus is effective in both the task of detecting audience groups and the task of identifying influencers of audience groups. We further show that AudClus makes possible for insightful observations on the relation between audience groups and influencers. The proposed method leads to various applications in areas such as viral marketing, expert finding, and data visualization.


Social influence Influencer detection Audience group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakshy, E., Hofman, J.M., Watts, D.J., Mason, W.A.: Everyone’s an influencer: quantifying influence on twitter. In: WSDM (2011)Google Scholar
  2. 2.
    Barbieri, N., Bonchi, F., Manco, G.: Cascade-based community detection. In: WSDM (2013)Google Scholar
  3. 3.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring user influence in twitter: the million follower fallacy. In: ICWSM (2010)Google Scholar
  4. 4.
    Chen, W., Wang, Y.: Efficient influence maximization in social networks. In: KDD (2009)Google Scholar
  5. 5.
    Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: ICDM (2010)Google Scholar
  6. 6.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6 Pt 2), 066111 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Systems 1695 (2006)Google Scholar
  8. 8.
    Eftekhar, M., Ganjali, Y., Koudas, N.: Information cascade at group scale. In: KDD (2013)Google Scholar
  9. 9.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: WSDM (2010)Google Scholar
  10. 10.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD (2003)Google Scholar
  11. 11.
    Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: KDD (2009)Google Scholar
  12. 12.
    Lin, S., Hu, Q., Wang, G., Yu, P.S.: Understanding community effects on information diffusion. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015, Part I. LNCS (LNAI), vol. 9077, pp. 82–95. Springer, Heidelberg (2015) Google Scholar
  13. 13.
    Liu, L., Tang, J., Han, J., Jiang, M., Yang, S.: Mining topic-level influence in heterogeneous networks. In: CIKM (2010)Google Scholar
  14. 14.
    Mehmood, Y., Barbieri, N., Bonchi, F., Ukkonen, A.: CSI: community-level social influence analysis. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS, vol. 8189, pp. 48–63. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Newman, M.E.J., Leicht, E.A.: Mixture models and exploratory analysis in networks. PNAS 104(23), 9564–9569 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD (2009)Google Scholar
  17. 17.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhong, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: KDD (2008)Google Scholar
  18. 18.
    Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: KDD (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shuyang Lin
    • 1
  • Qingbo Hu
    • 1
  • Jingyuan Zhang
    • 1
  • Philip S. Yu
    • 1
    • 2
  1. 1.University of Illinois at ChicagoChicagoUSA
  2. 2.Institute for Data ScienceTsinghua UniversityBeijingChina

Personalised recommendations