Dyad Ranking Using A Bilinear Plackett-Luce Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9285)


Label ranking is a specific type of preference learning problem, namely the problem of learning a model that maps instances to rankings over a finite set of predefined alternatives. These alternatives are identified by their name or label while not being characterized in terms of any properties or features that could be potentially useful for learning. In this paper, we consider a generalization of the label ranking problem that we call dyad ranking. In dyad ranking, not only the instances but also the alternatives are represented in terms of attributes. For learning in the setting of dyad ranking, we propose an extension of an existing label ranking method based on the Plackett-Luce model, a statistical model for rank data. Moreover, we present first experimental results confirming the usefulness of the additional information provided by the feature description of alternatives.


Label ranking Plackett-Luce model Meta-learning 


  1. 1.
    Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  2. 2.
    Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to Data Mining, 1st edn. Springer Publishing Company, Incorporated (2008)Google Scholar
  3. 3.
    Brazdil, P., Soares, C., Coasta, J.P.D.: Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning 50, 251–277 (2003)CrossRefGoogle Scholar
  4. 4.
    Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine learning (ICML 2007), pp. 129–136. ACM (2007)Google Scholar
  5. 5.
    Cheng, W., Dembczynski, K., Hüllermeier, E.: Label ranking methods based on the Plackett-Luce model. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 215–222 (2010)Google Scholar
  6. 6.
    Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of Artificial Intelligence Research 10(1), 243–270 (1999)MathSciNetGoogle Scholar
  7. 7.
    Fürnkranz, J., Hüllermeier, E.: Preference learning: An introduction. Preference Learning (2010)Google Scholar
  8. 8.
    Fürnkranz, J., Hüllermeier, E., Cheng, W., Park, S.H.: Preference-based reinforcement learning: A formal framework and a policy iteration algorithm. Machine Learning 89(1), 123–156 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new approach to multiclass classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  10. 10.
    Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classification and ranking. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 809–816. MIT Press (2003)Google Scholar
  11. 11.
    Hüllermeier, E., Cheng, W.: Superset learning based on generalized loss minimization. In: Proc. ECML/PKDD 2015, European Conference on Machine Learning and Knowledge Discovery in Databases, Porto, Portugal (2015)Google Scholar
  12. 12.
    Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artificial Intelligence 172(16), 1897–1916 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kamishima, T., Kazawa, H., Akaho, S.: A survey and empirical comparison of object ranking methods. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 181–201. Springer (2011)Google Scholar
  14. 14.
    Kanda, J., Soares, C., Hruschka, E., de Carvalho, A.: A meta-learning approach to select meta-heuristics for the traveling salesman problem using MLP-based label ranking. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 488–495. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic algorithms for the traveling salesman problem: A review of representations and operators. Artificial Intelligence Review 13, 129–170 (1999)CrossRefGoogle Scholar
  17. 17.
    Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Mathematical Programming 45(1–3), 503–528 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Marden, J.I.: Analyzing and Modeling Rank Data, 1st edn. Chapman & Hall (1995)Google Scholar
  19. 19.
    Menon, A.K., Elkan, C.: Dyadic prediction using a latent feature log-linear model (2010). arXiv preprint arXiv:1006.2156
  20. 20.
    Menon, A.K., Elkan, C.: A log-linear model with latent features for dyadic prediction. In: Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM 2010, pp. 364–373. IEEE Computer Society (2010)Google Scholar
  21. 21.
    Menon, A.K., Elkan, C.: Predicting labels for dyadic data. Data Mining and Knowledge Discovery 21(2), 327–343 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998) Google Scholar
  23. 23.
    Pahikkala, T., Airola, A., Stock, M., De Baets, B., Waegeman, W.: Efficient regularized least-squares algorithms for conditional ranking on relational data. Machine Learning 93, 321–356 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pahikkala, T., Waegeman, W., Airola, A., Salakoski, T., De Baets, B.: Conditional ranking on relational data. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part II. LNCS, vol. 6322, pp. 499–514. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  25. 25.
    Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 1453–1484 (2005)Google Scholar
  26. 26.
    Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Preference Learning, pp. 45–64. Springer (2011)Google Scholar
  27. 27.
    Zhou, Y., Liu, Y., Yang, J., He, X., Liu, L.: A taxonomy of label ranking algorithms. Journal of Computers 9(3), 557–565 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of MarburgMarburgGermany
  2. 2.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations