Advertisement

Optimisation

  • Annika Kangas
  • Mikko Kurttila
  • Teppo Hujala
  • Kyle Eyvindson
  • Jyrki Kangas
Chapter
  • 959 Downloads
Part of the Managing Forest Ecosystems book series (MAFE, volume 30)

Abstract

Linear programming is the most widely utilised optimisation method in forestry. Linear programming can be used to deal with many sustainability issues, such as the requirement of even flow of timber over time. It can also be used to deal with multiple goals, by using a constraint approach and Pareto front or by using a goal programming approach. Integer or mixed integer programming can also be used to deal with many spatial goals and constraints, like adjacency and green-up constraints or those of clustering timber harvests. In this chapter, we present different formulations of linear programming and their effect on the resulting harvest schedule with numerical examples. We also present different formulations of goal programming and the interpretation of the results in different cases. Furthermore, we present some more complicated planning cases involving hierarchical and spatial planning.

Keywords

Harvest scheduling Production possibility frontier Even-flow constraints Shadow prices Goal constraints Weighted deviations from target Maximum deviation from target Adjacency constraints Top-down planning Bottom-up planning 

References

  1. Bettinger, P., Lennette, M., Johnson, K. N., & Spies, T. A. (2005). A hierarchical spatial framework for forest landscape planning. Ecological Modelling, 182, 25–48.CrossRefGoogle Scholar
  2. Bettinger, P., Boston, K., Siry, J., & Grebner, D. L. (2009). Forest management and planning. Amsterdam: Academic. 360 p.Google Scholar
  3. Buongiorno, J., & Gilles, J. K. (2003). Decision methods for forest resource management. Amsterdam : Academic. 439 p.Google Scholar
  4. Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear programming (Vol. I). New York: John Wiley and Sons.Google Scholar
  5. Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, G. H., & Bailey, R. L. (1983). Timber management. A quantitative approach. New York: Wiley.Google Scholar
  6. Dantzig, G. B. (1951). Maximization of a linear function of variables subject to linear inequalities. In T. C. Koopmans (Ed.), Activity analysis of production and allocation. New York: Wiley.Google Scholar
  7. Davis, L.-S., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2001). Forest management – to sustain ecological, economic and social values (4th ed.). Boston: McGraw-Hill. 804 p.Google Scholar
  8. Díaz-Balteiro, L., & Romero, C. (2001). Combined use of goal programming and the analytic hierarchy process in forest management. In D. L. Schmoldt, J. Kangas, G. Mendoza, & M. Pesonen (Eds.), The analytic hierarchy process (AHP) for natural resource and environmental decision making (Managing Forest Ecosystems, Vol. 2, pp. 81–95). Dordrecht: Kluwer.CrossRefGoogle Scholar
  9. Díaz-Balteiro, L., & Romero, C. (2003). Forest management optimization models when carbon captured is considered: A goal programming approach. Forest Ecology and Management, 174, 447–457.CrossRefGoogle Scholar
  10. Duckstein, L., Korhonen, P., & Tecle, A. (1988). Multiobjective forest management: A visual, interactive, and fuzzy approach. In B. M. Kent & L. S. Davis (Eds.), The 1988 symposium on systems analysis in forest resources (General technical report, RM-161, pp. 68–74). Fort Collins: USDA Forest Service.Google Scholar
  11. Eyvindson, K. (2012). Balancing equity and efficiency of goal programming for use in forest management planning. Canadian Journal of Forest Research, 42, 1919–1925.CrossRefGoogle Scholar
  12. Eyvindson, K., Kangas, A., Kurttila, M., & Hujala, T. (2010). Using preference information in developing alternative forest plans. Canadian Journal of Forest Research, 40, 2398–2410.CrossRefGoogle Scholar
  13. Eyvindson, K., Kurttila, M., Hujala, T., & Kangas, A. (2015). Interactive preference elicitation incorporating a priori and a posteriori methods. Annals of Operations Research, 232, 99–113.Google Scholar
  14. Field, D. B. (1973). Goal programming for forest management. Forest Science, 19, 125–135.Google Scholar
  15. Flavell, R. B. (1976). A new goal programming formulation. Omega, 4(6), 731–732. doi: 10.1016/0305-0483(76)90099-2.CrossRefGoogle Scholar
  16. Goycoolea, M., Murray, A., Vielma, J. P., & Weintraub, A. (2009). Evaluating approaches for solving the area restriction model in harvest scheduling. Forest Science, 55(2), 149–165.Google Scholar
  17. Hillier, F. S., & Lieberman, G. J. (2001). Introduction to operations research (7th ed.). New York: McGraw Hill. 1214 p.Google Scholar
  18. Ignizio, J. P. (1976). Goal programming and extensions. Lexington: Lexington Books.Google Scholar
  19. Johnson, K. N., & Scheurman, H. L. (1977). Techniques for prescribing optimal timber harvest and investment under different objectives – Discussion and synthesis (Forest science monographs, 18). Washington: Society of American Foresters.Google Scholar
  20. Jones, D., & Tamiz, M. (2010). Practical goal programming (Vol. 141). New York: Springer.Google Scholar
  21. Kangas, J., & Pukkala, T. (1992). A decision theoretic approach applied to goal programming of forest management. Silva Fennica, 26, 169–176.CrossRefGoogle Scholar
  22. Kangas, J., Alho, J., Kolehmainen, O., & Mononen, A. (1998). Analyzing consistency of experts’ judgments – Case of assessing forest biodiversity. Forest Science, 44(4), 610–617.Google Scholar
  23. Kangas, A., Nurmi, M., & Rasinmäki, J. (2014). From strategic plan to a tactical plan using hierarchic optimization. Scandinavian Journal of Forest Research, 29, 154–165.CrossRefGoogle Scholar
  24. Kärkkäinen, L., Kurttila, M., Salminen, O., & Viiri, H. (2014). Effects of energy wood harvesting on timber production potential and biological diversity in North Karelia, Finland. Forest Science, 60, 1077–1088.CrossRefGoogle Scholar
  25. Kurttila, M., Pukkala, T., & Kangas, J. (2001). Composing landscape level forest plans for forest areas under multiple private ownership. Boreal Environmental Research, 6, 285–296.Google Scholar
  26. Lappi, J. (1992). JLP: A linear programming package for management planning (Research notes, 414). Helsinki: Finnish Forest Research Institute.Google Scholar
  27. Lappi, J., & Lempinen, R. (2014). A linear programming algorithm and software for forest-level planning problems including factories. Scandinavian Journal of Forest Research. doi: 10.1080/02827581.2014.886714.Google Scholar
  28. Lappi, J., & Siitonen, M. (1985). A utility model for timber production based on different interest rates for loans and savings. Silva Fennica, 19, 271–280.CrossRefGoogle Scholar
  29. McDill, M. E., & Braze, J. (2000). Comparing adjacency constraint formulations for randomly generated forest planning problems with four age-class distributions. Forest Science, 46, 423–436.Google Scholar
  30. Mendoza, G. A. (1987). Goal programming formulations and extensions: An overview and analysis. Canadian Journal of Forest Research, 17, 575–581.CrossRefGoogle Scholar
  31. Miettinen, K. (1999). Nonlinear multiobjective optimization. Springer.Google Scholar
  32. Murray, A. T. (1999). Spatial restrictions in harvest scheduling. Forest Science, 45, 45–52.Google Scholar
  33. Öhman, K., & Eriksson, L.-O. (2010). Aggregating harvest activities in long term forest planning by minimizing harvest area perimeters. Silva Fennica, 44, 77–89.CrossRefGoogle Scholar
  34. Öhman, K., & Wikström, P. (2008). Incorporating aspects of habitat fragmentation into long-term forest planning using mixed integer programming. Forest Ecology and Management, 255, 440–446.CrossRefGoogle Scholar
  35. Romero, C. (2004). A general structure of achievement function for a goal programming model. European Journal of Operational Research, 153(3), 675–686.CrossRefGoogle Scholar
  36. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.CrossRefGoogle Scholar
  37. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill. 287 p.Google Scholar
  38. Taha, H. A. (2007). Operations research: An introduction (8th ed.). New York: Pearson Prentice Hall. 838 p.Google Scholar
  39. Tamiz, M., Jones, D., & Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operational Research, 111, 569–581.CrossRefGoogle Scholar
  40. Tecle, A., Duckstein, L., & Korhonen, P. (1994). Interactive multiobjective programming for forest resources management. Applied Mathematics and Computing, 63, 75–93.CrossRefGoogle Scholar
  41. Weintraub, A., & Cholaky, A. (1991). A hierarchical approach to forest planning. Forest Science, 37(2), 439–460.Google Scholar
  42. Weintraub, A., & Davis, L. (1996). Hierarchical planning in forest resource management: Defining the dimensions of the subjected area (pp. 2–14). Petawawa National Forestry Institute, Canadian Forest Service, Information Report PI-X-124.Google Scholar
  43. Weintraub, A., Barahona, F., & Epstein, R. (1994). A column generation algorithm for solving general forest planning problems with adjacency constraints. Forest Science, 40, 142–161.Google Scholar
  44. Wu, J., & David, J. L. (2002). A spatially explicit hierarchical approach to modeling complex ecological systems: Theory and applications. Ecological Modelling, 153, 7–26.CrossRefGoogle Scholar
  45. Zhang, D., & Pearse, P. H. (2011). Forest resource economics. Vancouver: University of British Columbia Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Annika Kangas
    • 1
  • Mikko Kurttila
    • 2
  • Teppo Hujala
    • 3
  • Kyle Eyvindson
    • 4
  • Jyrki Kangas
    • 5
  1. 1.Economics and SocietyNatural Resources Institute Finland (Luke)JoensuuFinland
  2. 2.Bio-based Business and IndustryNatural Resources Institute Finland (Luke)JoensuuFinland
  3. 3.Bio-based Business and IndustryNatural Resources Institute Finland (Luke)HelsinkiFinland
  4. 4.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations