Multi-criteria Decision Problems

  • Annika Kangas
  • Mikko Kurttila
  • Teppo Hujala
  • Kyle Eyvindson
  • Jyrki Kangas
Part of the Managing Forest Ecosystems book series (MAFE, volume 30)


The essential part of multi-criteria decision analysis is structuring a value tree (or a decision hierarchy). Important in this phase is to find the relevant set of criteria and their potential sub-criteria. In this chapter, a definition for such a good set of criteria is provided. It is also important to design good decision alternatives. Therefore, hints on how to produce these alternatives are given. Another important aspect in multi-criteria analyses is the trade-offs between the criteria. These trade-offs can be inferred from the choices the decision-maker makes, either from actual or stated choices. We present different multi-attribute utility models and the interpretations of trade-offs these approaches imply. We present different approaches such as MAUT-related methods and the analytic hierarchy process (AHP)-related methods for estimating the trade-offs (or parameters of the utility functions) from stated choices. We present how the methods are applied for selecting the best alternative or ranking the alternatives in multi-criteria problems. We discuss the differences between the approaches and between the interpretations of the results.


Decision criteria Decision attribute Decision alternative Value tree Decision hierarchy Trade-off Multi-attribute utility model Analytic hierarchy process 


  1. Alho, J., & Kangas, J. (1997). Analysing uncertainties in experts’ opinions of forest plan performance. Forest Science, 43, 521–528.Google Scholar
  2. Alho, J., Kangas, J., & Kolehmainen, O. (1996). Uncertainty in the expert predictions of the ecological consequences of forest plans. Applied Statistics, 45, 1–14.CrossRefGoogle Scholar
  3. Alho, J. M., Kolehmainen, O., & Leskinen, P. (2001). Regression methods for pairwise comparisons data. In D. L. Schmoldt, J. Kangas, G. A. Mendoza, & M. Pesonen (Eds.), The analytic hierarchy process in natural resource and environmental decision making (pp. 235–251). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  4. Arbel, A. (1989). Approximate articulation of preference and priority derivation. European Journal of Operational Research, 43, 317–326.CrossRefGoogle Scholar
  5. Barzilai, J., & Golany, B. (1994). AHP rank reversal, normalization and aggregation rules. INFOR, 32, 57–64.Google Scholar
  6. Basak, I. (1998). Probabilistic judgments specified partially in the Analytic Hierarchy Process. European Journal of Operational Research, 108, 153–164.CrossRefGoogle Scholar
  7. Belton, V., & Gear, T. (1983). On a short-coming of Saaty’s method of analytic hierarchies. Omega, 11, 228–230.CrossRefGoogle Scholar
  8. Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: An integrated approach. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  9. Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology, 29, 387–405.CrossRefGoogle Scholar
  10. De Jong, P. (1984). A statistical approach to Saaty’s scaling method for priorities. Journal of Mathematical Psychology, 28, 467–478.CrossRefGoogle Scholar
  11. Dhami, I., Deng, J., Burns, R. C., & Pierskalla, C. (2014). Identifying and mapping forest-based ecotourism areas in West Virginia – Incorporating visitors’ preferences. Tourism Management, 42, 165–176.CrossRefGoogle Scholar
  12. Eckenrode, R. T. (1965). Weighting multiple criteria. Management Science, 12, 180–192.CrossRefGoogle Scholar
  13. Edwards, W., & Barron, F. H. (1994). SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement. Organizational Behaviour and Human Decision Process, 60, 306–325.CrossRefGoogle Scholar
  14. Eliashberg, J. (1980). Consumer preference judgments: An exposition with empirical applications. Management Science, 26, 60–77.CrossRefGoogle Scholar
  15. Fishburn, P. C. (1967). Methods of estimating additive utilities. Management Science, 13, 435–453.CrossRefGoogle Scholar
  16. Hammond, J. S., Keeney, R. L., & Raiffa, H. (1998a). Even swaps: A rational method for making trade-offs. Harvard Business Review, March–April, pp. 1–11.Google Scholar
  17. Hammond, J. S., Keeney, R. L., & Raiffa, H. (1998b). Smart choices: A practical guide to making better decisions. Boston, MA: Harvard Business School Press.Google Scholar
  18. Horsky, D., & Rao, M. R. (1984). Estimation of attribute weights from preference comparisons. Management Science, 30, 801–821.CrossRefGoogle Scholar
  19. Hwang, C.-L., & Masud, A. S. M. (1979). Multi objective decision making – Methods and applications. Berlin: Springer.CrossRefGoogle Scholar
  20. Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis. Methods and software. Chichester: Wiley. 296 p.CrossRefGoogle Scholar
  21. Jacquet-Lagreze, E., & Siskos, J. (1981). Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research, 10, 151–164.CrossRefGoogle Scholar
  22. Kajanus, M., Ahola, J., Kurttila, M., & Pesonen, M. (2001). Application of even swaps for strategy selection in a rural enterprise. Management Decision, 39, 394–402.CrossRefGoogle Scholar
  23. Kajanus, M., Kangas, J., & Kurttila, M. (2004). The use of value focused thinking and the A’WOT hybrid method in tourism management. Tourism Management, 25, 499–506.CrossRefGoogle Scholar
  24. Kajanus, M., Leskinen, P., Kurttila, M., & Kangas, J. (2012). Making use of MCDS methods in SWOT analysis – Lessons learnt in strategic natural resources management. Forest Policy and Economics, 20, 1–9.CrossRefGoogle Scholar
  25. Kangas, J. (1992). Multiple-use planning of forest resources by using the Analytic Hierarchy Process. Scandinavian Journal of Forest Research, 7, 259–268.CrossRefGoogle Scholar
  26. Kangas, J., Karsikko, J., Laasonen, L., & Pukkala, T. (1993a). A method for estimating the suitability function of wildlife habitat for forest planning on the basis of expertise. Silva Fennica, 27, 259–268.CrossRefGoogle Scholar
  27. Kangas, J., Laasonen, L., & Pukkala, T. (1993b). A method for estimating forest landowner’s landscape preferences. Scandinavian Journal of Forest Research, 8, 408–417.CrossRefGoogle Scholar
  28. Kangas, J. (1999). The analytic hierarchy process (AHP): Standard version, forestry application and advances. In F. Helles, P. Holten-Andersen, & L. Wichmann (Eds.), Multiple use of forests and other natural resources (Forestry sciences, Vol. 61, pp. 96–105). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  29. Kangas, J., & Pukkala, T. (1996). Operationalization of biological diversity as a decision objective in tactical forest planning. Canadian Journal of Forest Research, 26, 103–111.CrossRefGoogle Scholar
  30. Kangas, J., Matero, J., & Pukkala, T. (1992). Analyyttisen hierarkiaprosessin käyttö metsien monikäytön suunnitteluun – tapaustutkimus. Metsäntutkimuslaitoksen tiedonantoja, 412. 48 p.Google Scholar
  31. Kangas, J., Laasonen, L., & Pukkala, T. (1993). A method for estimating forest landowners landscape preferences. Scandinavian Journal of Forest Research, 8, 408–417.CrossRefGoogle Scholar
  32. Kangas, J., Kangas, A., Leskinen, P., & Pykäläinen, J. (2001a). MCDM methods in strategic planning of forestry on state-owned lands in Finland: Applications and experiences. Journal of Multi-Criteria Decision Analysis, 10, 257–271.Google Scholar
  33. Kangas, J., Pesonen, M., Kurttila, M., & Kajanus, M. (2001b). A’WOT: Integrating the AHP with SWOT analysis. In: K. Dellman (Ed.), Proceedings of the sixth international symposium on the analytic hierarchy process ISAHP 2001 (pp. 189–199), August 2–4, 2001, Kursaal Bern, Berne-Switzerland. Bern.Google Scholar
  34. Kärkkäinen, L., Kurttila, M. Salminen, O., & Viiri, H. (2014). Effects of energy wood harvesting on timber production potential and biological diversity in North Karelia, Finland. Forest Science, (in press).Google Scholar
  35. Keeney, R. L. (1992). Value-focused thinking. A path to creative decision making. Cambridge: Harvard University Press. 416 p.Google Scholar
  36. Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley. 569 p.Google Scholar
  37. Kukrety, S., Jose, S., & Alavalapati, J. R. R. (2013). Exploring stakeholders’ perceptions with Analytic Hierarchy Process – A case study of Red Sanders (Pterocarpus santalinus L.) restoration in India. Restoration Ecology, 21, 777–784.CrossRefGoogle Scholar
  38. Kurttila, M., Pesonen, M., Kangas, J., & Kajanus, M. (2000). Utilizing the analytic hierarchy process (AHP) in SWOT analysis – A hybrid method and its application to a forest–certification case. Forest Policy and Economics, 1, 41–52.CrossRefGoogle Scholar
  39. Laskey, K. B., & Fischer, G. W. (1987). Estimating utility functions in the presence of response error. Management Science, 33, 965–980.CrossRefGoogle Scholar
  40. Leskinen, P. (2001). Statistical methods for measuring preferences. Publications in Social Sciences 48, Doctoral thesis, University of Joensuu.Google Scholar
  41. Leskinen, P., & Kangas, J. (1998). Analysing uncertainties of interval judgement data in multiple-criteria evaluation of forest plans. Silva Fennica, 32, 363–372.CrossRefGoogle Scholar
  42. Leskinen, P., & Kangas, J. (2005a). Multi-criteria natural resource management with preferentially dependent decision criteria. Journal of Environmental Management, 77, 244–251.CrossRefPubMedGoogle Scholar
  43. Leskinen, P., & Kangas, J. (2005b). Rank reversals in multi-criteria decision analysis with statistical modelling of ratio scale pairwise comparisons. Journal of the Operational Research Society, 56, 855–861.CrossRefGoogle Scholar
  44. Leskinen, P., Kangas, J., & Pasanen, A.-M. (2003). Assessing ecological values with dependent explanatory variables in multi-criteria forest ecosystem management. Ecological Modelling, 170, 1–12.CrossRefGoogle Scholar
  45. Leskinen, P., Kangas, A., & Kangas, J. (2004). Rank-based modelling of preferences in multi-criteria decision making. European Journal of Operational Research, 158, 721–733.CrossRefGoogle Scholar
  46. Malczewski, J. (1999). GIS and multi-criteria decision analysis. New York: Wiley. 392 p.Google Scholar
  47. Mendoza, G. A., & Prabhu, R. (2001). A fuzzy Analytic Hierarchy Process for assessing biodiversity conservation. In D. Schmoldt, J. Kangas, G. A. Mendoza, & M. Pesonen (Eds.), The analytic hierarchy process in natural resource and environmental decision making (Managing forest ecosystems, Vol. 3, pp. 219–235). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  48. Mendoza, G. A., & Sprouce, W. (1989). Multiobjective programming for generating alternatives. Forest Science, 33, 458–468.Google Scholar
  49. Miettinen, K. (1999). Nonlinear multiobjective optimization. New York: Springer.Google Scholar
  50. Murray, D. M., & von Gadow, K. (1991). Prioritizing mountain catchment areas. Journal of Environmental Management, 32, 357–366.CrossRefGoogle Scholar
  51. Mustajoki, J., & Hämäläinen, R. (2005). A preference programming approach to make the even swaps method even easier. Decision Analysis, 2, 110–123.CrossRefGoogle Scholar
  52. Mustajoki, J., & Hämäläinen, R. (2006). Smart-Swaps – Decision support for the PrOACT process with the even swaps method. Manuscript.Google Scholar
  53. Pesonen, M., Ahola, J., Kurttila, M., Kajanus, M., & Kangas, J. (2001a). Applying A’WOT to forest industry investment strategies: Case Study of a Finnish Company in North America. In D. Schmoldt, J. Kangas, G. A. Mendoza, & M. Pesonen (Eds.), The analytic hierarchy process in natural resource and environmental decision making (pp. 131–148). Dordrecht: Kluwer Academic Publishers.Google Scholar
  54. Pesonen, M., Kurttila, M., Kangas, J., Kajanus, M., & Heinonen, P. (2001b). Assessing priorities using A’WOT among resource management strategies at Finnish Forest and Park Service. Forest Science, 47, 534–541.Google Scholar
  55. Pöyhönen, M., & Hämäläinen, R. P. (1998). Notes on the weighting biases in value trees. Journal of Behavioral Decision Making, 11, 139–150.CrossRefGoogle Scholar
  56. Pöyhönen, M., Vrolijk, H., & Hämäläinen, R. P. (2001). Behavioral and procedural consequences of structural variation in value trees. European Journal of Operational Research, 134, 216–227.CrossRefGoogle Scholar
  57. Prabhu, R., Colfer, C. J. P., & Dudley, R. G. (1999). Guidelines for developing, testing and selecting criteria and indicators for sustainable forest management. The Criteria and Indicators Toolbox Series, vol. 1. Center for International Forestry Research, Bogor. 186 pp.
  58. Pukkala, T. (2006). Monsu-metsäsuunnitteluohjelmisto. Versio 5. Ohjelmiston toiminta ja käyttö. Mimeograph. 53 p.Google Scholar
  59. Pukkala, T., & Kangas, J. (1993). A heuristic optimization method for forest planning and decision making. Scandinavian Journal of Forest Research, 8, 560–570.CrossRefGoogle Scholar
  60. Pukkala, T., Kellomäki, S., & Mustonen, E. (1988). Predicting the amenity of a tree stand. Scandinavian Journal of Forest Research, 3, 533–544.CrossRefGoogle Scholar
  61. Pykäläinen, J., Kangas, J., & Loikkanen, T. (1999). Interactive decision analysis in participatory strategic forest planning: Experiences from State owned boreal forests. Journal of Forest Economics, 5, 341–364.Google Scholar
  62. Raucher, H. M., Lloyd, F. T., Loftis, D. L., & Twery, M. J. (2000). A practical decision-analysis process for forest ecosystem management. Computers and Electronics in Agriculture, 27, 195–226.CrossRefGoogle Scholar
  63. Reynolds, K. M. (2001). Prioritizing salmon habitat restoration with the AHP, SMART, and uncertain data. In D. Schmoldt, J. Kangas, G. M. Mendoza, & M. Pesonen (Eds.), The analytic hierarchy process in natural resources and environmental decision making (pp. 199–218). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  64. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.CrossRefGoogle Scholar
  65. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.Google Scholar
  66. Saaty, T. L. (1990). The analytic hierarchy process: Planning, priority setting, resource allocation (2nd ed.). Pittsburgh: RWS Publications.Google Scholar
  67. Saaty, T. L. (2001). Decision making with dependence and feedback. The analytic network process (2nd ed.). Pittsburgh: RWS Publications.Google Scholar
  68. Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications. The AHP/ANP Approach, 61(5), 1101–1118.Google Scholar
  69. Salo, A. A., & Hämäläinen, R. P. (1992). Preference assessment by imprecise ratio statements. Operations Research, 40, 1053–1061.CrossRefGoogle Scholar
  70. Schmoldt, D., Kangas, J., Mendoza, G. A., & Pesonen, M. (Eds.). (2001). The analytic hierarchy process in natural resource and environmental decision making. Dordrecht: Kluwer Academic Publishers.Google Scholar
  71. Schoemaker, P. J., & Waid, C. C. (1982). An experimental comparison of different approaches to determining weights in additive utility models. Management Science, 28, 182–196.CrossRefGoogle Scholar
  72. Stillwell, W. G., Seaver, D. A., & Edwards, D. (1981). A comparison of weight approximation techniques in multiattribute utility decision making. Organizational Behavior and Human Performance, 28, 62–77.CrossRefGoogle Scholar
  73. Tell, B. (1976). A comparative study of some multiple-criteria methods. The Economic Research Institute at the Stockholm School of Economics. 203 p.Google Scholar
  74. Tell, B., & Wallenius, J. (1979). A survey of multiple-criteria decision methods and applications: Utility theory and mathematical programming. Liiketaloudellinen aikakauskirja, 28, 3–22.Google Scholar
  75. Vacik, H., & Lexer, M. J. (2001). Application of a spatial decision support system in managing the protection forests of Vienna for sustained yield of water resources. Forest Ecology and Management, 143, 65–76.CrossRefGoogle Scholar
  76. von Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research. Cambridge: Cambridge University Press.Google Scholar
  77. Wolfslehner, B., Vacik, H., & Lexer, M. J. (2005). Application of the analytic network process in multi-criteria analysis of sustainable forest management. Forest Ecology and Management, 207, 157–170.CrossRefGoogle Scholar
  78. Zionts, S., & Wallenius, J. (1976). An interactive programming method for solving the multiple criteria problem. Management Science, 22, 652–663.CrossRefGoogle Scholar
  79. Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29, 519–529.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Annika Kangas
    • 1
  • Mikko Kurttila
    • 2
  • Teppo Hujala
    • 3
  • Kyle Eyvindson
    • 4
  • Jyrki Kangas
    • 5
  1. 1.Economics and SocietyNatural Resources Institute Finland (Luke)JoensuuFinland
  2. 2.Bio-based Business and IndustryNatural Resources Institute Finland (Luke)JoensuuFinland
  3. 3.Bio-based Business and IndustryNatural Resources Institute Finland (Luke)HelsinkiFinland
  4. 4.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations