Advertisement

Final Remarks

  • Annika Kangas
  • Mikko Kurttila
  • Teppo Hujala
  • Kyle Eyvindson
  • Jyrki Kangas
Chapter
  • 858 Downloads
Part of the Managing Forest Ecosystems book series (MAFE, volume 30)

Abstract

In this chapter, we discuss the overall selection of decision support tools and usefulness of decision support tools in general. First, we acknowledge the varying suitability of different methods for different purposes. After that, we discuss the possibilities of combining different decision support tools to improve the decision process and outcome. We illustrate the effect of information requirements on the selection of decision support tools. Furthermore, we discuss the requirements different tools set to the skills of the planning consultants, decision-makers and stakeholders. It is important that everyone involved is able to understand how the tools work and how the results should be interpreted. We provide practical recommendations on what type of decision support methods and tools suit different purposes, and what aspects need to be taken into account when making method choices. We conclude the chapter with summarising the most prevalent challenges in the development and use of decision support methods and tools for advancing multiple-purpose forestry.

Keywords

Decision situation Multimethodology Uncertainties Optimisation methods Multi-criteria methods Planning consultants Facilitators Familiarity Comprehensibility of methods Interpretation of results Hybrid methods 

References

  1. Bell, M. L., Hobbs, B. F., Elliott, E. M., Ellis, H., & Robinson, Z. (2001). An evaluation of multi-criteria methods in integrated assessment of climate policy. Journal of Multi-Criteria Decision Analysis, 10, 229–256.CrossRefGoogle Scholar
  2. Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: An integrated approach. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  3. Borges, J. G., Nordström, E. -M., Garcia-Gonzalo, J., Hujala T., & Trasobares, A. (Eds.). (2014). Computer-based tools for supporting forest management. The experience and the expertise world-wide. Report of Cost Action FP 0804 Forest Management Decision Support Systems FORSYS. Sveriges lantbruksuniversitetet. ISBN 978-91-576-9236-8.Google Scholar
  4. Corner, J., & Buchanan, J. (1997). Capturing decision maker preference: Experimental comparison of decision analysis and MCDM techniques. European Journal of Operational Research, 98, 85–97.CrossRefGoogle Scholar
  5. Kangas, J., & Kangas, A. (2002). Multiple criteria decision support methods in forest management: An overview and comparative analyses. In T. Pukkala (Ed.), Multi-objective forest planning (pp. 37–70). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  6. Kangas, J., & Kangas, A. (2005). Multiple criteria decision support in forest management – Fundamentals of the approach, methods applied, and experiences gained. Forest Ecology and Management, 207, 133–143.CrossRefGoogle Scholar
  7. Kangas, J., & Store, R. (2003). Internet and teledemocracy in participatory planning of natural resource management. Landscape and Urban Planning, 62, 89–101.CrossRefGoogle Scholar
  8. Kangas, J., Kangas, A., Leskinen, P., & Pykäläinen, J. (2001a). MCDM methods in strategic planning of forestry on state-owned lands in Finland: Applications and experiences. Journal of Multi-Criteria Decision Analysis, 10, 257–271.CrossRefGoogle Scholar
  9. Kangas, J., Pesonen, M., Kurttila, M., & Kajanus, M. (2001b). A’WOT: Integrating the AHP with SWOT analysis. In K. Dellman (Ed.), Proceedings of the sixth international symposium on the analytic hierarchy process ISAHP 2001 (pp. 189–199). Kursaal Bern, Berne-Switzerland. Bern, 2–4 August 2001Google Scholar
  10. King, A. J., & Wallace, S. W. (2012). Modelling with stochastic programming. New York: Springer. 173 p.CrossRefGoogle Scholar
  11. Larichev, O. I. (1992). Cognitive validity in design of decision-aiding techniques. Journal of Multi-Criteria Decision Analysis, 1, 127–138.CrossRefGoogle Scholar
  12. Miettinen, K., & Mäkelä, M. M. (1999). Comparative evaluation of some interactive reference point-based methods for multi-objective optimization. Journal of the Operational Research Society, 50, 949–959. doi: 10.1057/palgrave.jors.2600786.CrossRefGoogle Scholar
  13. Mingers, J., & Brocklesby, J. (1997). Multimethodology: Towards a framework for mixing methodologies. Omega, International Journal of Management Science, 5, 489–509.CrossRefGoogle Scholar
  14. Mustajoki, H., Saarikoski, H., Marttunen, M., Ahtikoski, A., Hallikainen, V., Helle, T., Hyppönen, M., Jokinen, M., Naskali, A., Tuulentie, S., Varmola, M., Vatanen, E., & Ylisirniö, A. L. (2011). Use of decision analysis interviews to support the sustainable use of the forests in Finnish Upper Lapland. Journal of Environmental Management, 92, 1550–1563.CrossRefPubMedGoogle Scholar
  15. Myllyviita, T., Hujala, T., Kangas, A., Eyvindson,K., Sironen, S., Leskinen, P., & Kurttila, M. (2014). Mixing methods – Assessment of potential benefits for natural resources planning. Scandinavian Journal of Forest Research, 29 (Suppl. 1), 20–29.Google Scholar
  16. Pykäläinen, J. (2000). Interactive use of multi-criteria decision analysis in forest planning. Doctoral thesis, University of Joensuu, Faculty of Forestry, Joensuu.Google Scholar
  17. Pykäläinen, J., Hiltunen, V., & Leskinen, P. (2007). Complementary use of voting methods and interactive utility analysis in participatory strategic forest planning: Experiences gained from western Finland. Canadian Journal of Forest Research, 37, 853–865.CrossRefGoogle Scholar
  18. Shepetukha, Y., & Olson, D. L. (2001). Comparative analysis of multiattribute techniques based on cardinal and ordinal inputs. Mathematical and Computer Modelling, 34, 229–241.CrossRefGoogle Scholar
  19. Shields, D. J., Tolwinski, B., & Keny, B. M. (1999). Models for conflict resolution in ecosystem management. Socio-Economic Planning Sciences, 33, 61–84.CrossRefGoogle Scholar
  20. Sironen, S., Leskinen, P., Kangas, A., & Hujala, T. (2014). Variation of preference inconsistency when applying ratio and interval scale pairwise comparisons. Journal of Multi-Criteria Decision Analysis, 21(3–4), 183–195.CrossRefGoogle Scholar
  21. Sugimura, K. (1993). Evaluation of forest functions by local people: development of a research method. In: Proceedings of the IUFRO conference. Forestry Research Insitute of the Republic of Korea, Seoul, Korea, 20–25 September 1993.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Annika Kangas
    • 1
  • Mikko Kurttila
    • 2
  • Teppo Hujala
    • 3
  • Kyle Eyvindson
    • 4
  • Jyrki Kangas
    • 5
  1. 1.Economics and SocietyNatural Resources Institute Finland (Luke)JoensuuFinland
  2. 2.Bio-based Business and IndustryNatural Resources Institute Finland (Luke)JoensuuFinland
  3. 3.Bio-based Business and IndustryNatural Resources Institute Finland (Luke)HelsinkiFinland
  4. 4.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations