Behavioural Aspects

  • Annika Kangas
  • Mikko Kurttila
  • Teppo Hujala
  • Kyle Eyvindson
  • Jyrki Kangas
Part of the Managing Forest Ecosystems book series (MAFE, volume 30)


Decision support tools are often criticised from the point of view that people are typically not maximising their utility as normative decision theory expects but rather following rules. We discuss the approaches that describe decision analysis from the behavioural point of view and emphasise that while people without aid do not necessarily maximise their utility, they might make better (i.e. closer to the maximum utility) decisions when aided. Decision support based on the image theory is presented as one possible solution in combining the behavioural and decision aid viewpoints. In addition, the chapter introduces some most prevalent biases and distortions (e.g. framing effect, groupthink) that may appear and ought to be mitigated in participatory and group decision-making settings.


Bounded rationality Rule-based decision-making Utility maximisation Satisficing Economising behaviour Loss aversion Cognitive distortions Social biases Strategic behaviour Prospect theory 


  1. Beach, L. R., & Mitchell, T. R. (1987). Image theory: Principles goals and plans in decision making. Acta Psychologica, 66, 201–220.CrossRefGoogle Scholar
  2. Beach, L. R., & Mitchell, T. R. (1990). Image theory: A behavioral theory of decisions in organizations. Research in Organizational Behavior, 12, 1–41.Google Scholar
  3. Birchler, U., & Bütler, M. (2007). Information economics. London: Routledge. 462 pp.CrossRefGoogle Scholar
  4. De Meo, I., Ferretti, F., Hujala, T., & Kangas, A. (2013). The usefulness of Decision Support Systems in participatory forest planning: A comparison between Finland and Italy. Forest Systems, 22(2), 304–319.CrossRefGoogle Scholar
  5. Einhorn, H. J. (1982). Learning from experience and suboptimal rules in decision making. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 268–286). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. French, S. (1989). Readings in decision analysis. London: Chapman and Hall. 210 p.CrossRefGoogle Scholar
  7. Haara, A., Kurttila, M., Pykäläinen, J., Hokajärvi, R., & Kilpeläinen, H. (2014). Constructing forest plans interactively based on owner-driven evaluation of the holding- and stand-level alternatives. Scandinavian Journal of Forest Research, 29 (Sup 1), 185–194.Google Scholar
  8. Herbert, A., & Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69, 99–118.CrossRefGoogle Scholar
  9. Hujala, T., Pykäläinen, J., & Tikkanen, J. (2007). Decision making among Finnish non-industrial private forest owners: The role of professional opinion and desire to learn. Scandinavian Journal of Forest Research, 22(5), 454–463.CrossRefGoogle Scholar
  10. Hujala, T., Khadka, C., Wolfslehner, B., & Vacik, H. (2013). Supporting problem structuring with computer-based tools in participatory forest planning. Forest Systems, 22(2), 270–281.CrossRefGoogle Scholar
  11. Janis, I. L., & Mann, L. (1977). Decision making. A psychological analysis of conflict, choice and commitment. New York: Free Press. 488 p.Google Scholar
  12. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.CrossRefGoogle Scholar
  13. Kangas, A. S. (2010). Value of forest information. European Journal of Forest Research, 129(5), 863–874.CrossRefGoogle Scholar
  14. Kasanen, E., Wallenius, H., Wallenius, J., & Zionts, S. (2000). A study of high-level managerial decision processes, with implications for MCDS research. European Journal of Operational Research, 120, 496–510.CrossRefGoogle Scholar
  15. Lindblom, C. (1959). The science of “Muddling through”. Public Administrative Review, 79–88.Google Scholar
  16. March, J. (1994). A primer on decision making – How decisions happen. New York: Free Press. 289 p.Google Scholar
  17. MacLeod, W. P., & Pingle, M. (2005). Aspiration uncertainty: Its impact on decision performance and process. Journal of Economic Behaviour and Organization, 56, 617–629.CrossRefGoogle Scholar
  18. Mäkinen, A., Kangas, A., & Nurmi, M. (2012). Using cost-plus-loss analysis to define optimal forest inventory interval and forest inventory accuracy. Silva Fennica, 46(2), 211–226.CrossRefGoogle Scholar
  19. Oechssler, J. (2002). Cooperation as a result of learning with aspiration levels. Journal of Economic Behaviour and Organization, 49, 405–409.CrossRefGoogle Scholar
  20. Pingle, M., & Day, R. H. (1996). Models of economizing behavior: Experimental evidence. Journal of Economic Behaviour and Organization, 29, 191–209.CrossRefGoogle Scholar
  21. Simon, H. A. (1957). Models of man: Social and national. New York: Wiley. 247 p.Google Scholar
  22. Simon, H. A., Egidi, M., Viale, R., & Marris, R. (1992). Economics, bounded rationality and the cognitive revolution. Brookfield: Edward Elgar. 232 pp.Google Scholar
  23. Turunen, M. (2003). Mielikuvateoria säännöstelyn kehittämisessä. Diploma thesis, Helsinki University of Technology, Department of Water Resources Engineering.Google Scholar
  24. Tversky, A., & Kahneman, D. (1982). Judgement under uncertainty. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 3–20). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical Modelling, 3(5), 391–405.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Annika Kangas
    • 1
  • Mikko Kurttila
    • 2
  • Teppo Hujala
    • 3
  • Kyle Eyvindson
    • 4
  • Jyrki Kangas
    • 5
  1. 1.Economics and SocietyNatural Resources Institute Finland (Luke)JoensuuFinland
  2. 2.Bio-based Business and IndustryNatural Resources Institute Finland (Luke)JoensuuFinland
  3. 3.Bio-based Business and IndustryNatural Resources Institute Finland (Luke)HelsinkiFinland
  4. 4.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations