Architecture for Wide Area Appliance Management

Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 612)


We studied architecture for Internet-of-Things (IoT) appliances with constrained resources to enable controlling and managing them over a wide area network. By clarifying requirements for using wide area network, we examined issues that are associated with each related standard-based technologies. Our analysis gives us a solution by combining CoAP and ECHONET Lite to complement each other to overcome the issues associated with using them in a wide area network, especially suitable for virtual gateways located in a cloud. We then showed a realization of our proposed architecture by prototyping the system.


CoAP ECHONET Lite Internet of things Wide area appliance management 



We thank Noi Koike and Rumina Koike for proof reading this manuscript.


  1. 1.
    Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol (CoAP). RFC7252, IETF (2014)Google Scholar
  2. 2.
    Hui, J. (ed.), Thubert, P.: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks. RFC6282, IETF (2011)Google Scholar
  3. 3.
    Bormann, C., Ersue, M., Keranen, A.: Terminology for Constrained-Node Networks RFC7228, IETF (2014)Google Scholar
  4. 4.
    OMA: Lightweight Machine to Machine Technical Specification. OMA-TS-LightweightM2M-\({\rm V}1\_0\)-20131210-C, Open Mobile Alliance (2013)Google Scholar
  5. 5.
    Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hypertext Transfer Protocol–HTTP/1.1. RFC2616, IETF (1999)Google Scholar
  6. 6.
    International Business Machines (IBM) Corporation, Eurotech: MQ Telemetry Transport (MQTT) V3.1 Protocol Specification (2010)Google Scholar
  7. 7.
    ECHONET Consortium: ECHONET Lite Specification, version 1.1 (2014)Google Scholar
  8. 8.
    Toji, R.: Trends concerning standardization of openADR. NTT Tech. Rev. 11(12) (2013)Google Scholar
  9. 9.
    Kitano, R., Tatemichi, H., Iwasaki, N., Toji, R.: Automated appliance control with cooperation of automated demand response and conditions. In IEICE Communication Society Conference, 210, B-9-11, September (2013)Google Scholar
  10. 10.
    Fujita, T., Goto, Y., Koike, A: M2M Architecture Trends and Technical Issues (in Japanese). Journal of IEICE Vol.96, No.5, pp.305-312, May (2013)Google Scholar
  11. 11.
    IPv6 Promotion Council: Consideration on how to construct IPv6 multi-prefix environment (in Japanese) (2007)Google Scholar
  12. 12.
    Home Gateway Initiative: Use Cases and Architecture for a Home Energy Management Service. HGI-GD017-R3 (2011)Google Scholar
  13. 13.
    OSGi Alliance Web Page.
  14. 14.
    Akai, K., Fukuda, F., Fukushima, N., Yanata, R., Furukawa, Y.: A study on device management method using IEEE1888 in smart communities (in Japanese). IPSJ, SIG Tech. Rep. vol. 2012 CDS-4(10) (2012)Google Scholar
  15. 15.
    Masuo, T., Nakamura, J., Matsuoka, M., Hasegawa, G., Murata, M., Matsuda, K.: Study on HEMS over cloud system utilizing realtime web technologie (in Japanese). IEICE Tech. Rep. (NS2012-117) 112(350), 1–6 (2012)Google Scholar
  16. 16.
    Nottingh, M., Hammer-Lahav, E.: Defining Well-Known Uniform Resource Identifiers (URIs). RFC5785, IETF (2010)Google Scholar
  17. 17.
    Shelby, Z.: Constrained RESTful Environments (CoRE) Link Format, RFC6690, IETF (2012)Google Scholar
  18. 18.
    Shelby, Z., Bormann, C., Krco, S.: CoRE Resource Directory. Internet-Draft, draft-ietf-core-resource-directory-05, IETF (2015)Google Scholar
  19. 19.
    libcoap: C-Implementation of CoAP.
  20. 20.
    Sony Computer Science Laboratories, Inc.: OpenECHO.
  21. 21.
  22. 22.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Network Technology LaboratoriesNippon Telegraph and Telephone Corp.TokyoJapan
  2. 2.Currently with Service Design Division, NTT DOCOMO, Inc.TokyoJapan

Personalised recommendations