Skip to main content

Structure Preserving Bisimilarity, Supporting an Operational Petri Net Semantics of CCSP

  • Chapter
  • First Online:
Correct System Design

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9360))

Abstract

In 1987 Ernst-Rüdiger Olderog provided an operational Petri net semantics for a subset of CCSP, the union of Milner’s CCS and Hoare’s CSP. It assigns to each process term in the subset a labelled, safe place/transition net. To demonstrate the correctness of the approach, Olderog established agreement (1) with the standard interleaving semantics of CCSP up to strong bisimulation equivalence, and (2) with standard denotational interpretations of CCSP operators in terms of Petri nets up to a suitable semantic equivalence that fully respects the causal structure of nets. For the latter he employed a linear-time semantic equivalence, namely having the same causal nets.

This paper strengthens (2), employing a novel branching-time version of this semantics—structure preserving bisimilarity—that moreover preserves inevitability. I establish that it is a congruence for the operators of CCSP.

NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Autant, C., Belmesk, Z., Schnoebelen, P.: Strong bisimilarity on nets revisited. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) Proc. PARLE 1991. LNCS, vol. 506, pp. 295–312. Springer, Heidelberg (1991)

    Google Scholar 

  2. Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent Bisimulations in Petri nets. Acta Informatica 28, 231–264 (1991). doi:10.1007/BF01178506

    Article  MathSciNet  MATH  Google Scholar 

  3. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31(3), 560–599 (1984). doi:10.1145/828.833

    Article  MathSciNet  MATH  Google Scholar 

  4. Castellano, L., De Michelis, G., Pomello, L.: Concurrency vs interleaving: an instructive example. Bulletin of the EATCS 31, 12–15 (1987)

    MATH  Google Scholar 

  5. Degano, P., De Nicola, R., Montanari, U.: CCS is an (augmented) contact free C/E system. In: Zilli, M.V. (ed.) MMSP 1987. LNCS, vol. 280, pp. 144–165. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  6. Emerson, E.A., Clarke, E.M.: Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons. Science of Computer Programming 2(3), 241–266 (1982). doi:10.1016/0167-6423(83)90017-5

    Article  MATH  Google Scholar 

  7. Engelfriet, J.: Branching Processes of Petri Nets. Acta Informatica 28(6), 575–591 (1991). doi:10.1007/BF01463946

    Article  MathSciNet  MATH  Google Scholar 

  8. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV. Technical Report 5513, NICTA, Sydney, Australia (2013). http://arxiv.org/abs/1312.7645

  9. Genrich, H., Stankiewicz-Wiechno, E.: A dictionary of some basic notions of net theory. In: Brauer, W. (ed.) Advanced Course: Net Theory and Applications. LNCS, vol. 84, pp. 519–531. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  10. van Glabbeek, R.J.: The refinement theorem for ST-bisimulation semantics. In: Broy, M., Jones, C.B. (eds.) Proceedings IFIP TC2 Working Conference on Programming Concepts and Methods. IFIP, pp. 27–52. Springer, Heidelberg (1990)

    Google Scholar 

  11. van Glabbeek, R.J.: The linear time - branching time spectrum I; the semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, vol. 1, pp. 3–99. Elsevier (2001). doi:10.1016/B978-044482830-9/50019-9

  12. van Glabbeek, R.J.: The individual and collective token interpretations of petri nets. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 323–337. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. van Glabbeek, R.J., Goltz, U.: Refinement of Actions and Equivalence Notions for Concurrent Systems. Acta Informatica 37, 229–327 (2001). doi:10.1007/s002360000041

    Article  MathSciNet  MATH  Google Scholar 

  14. van Glabbeek, R.J., Höfner, P.: CCS: It’s not fair!. Acta Informatica 52(2–3), 175–205 (2015). doi:10.1007/s00236-015-0221-6

    Article  MathSciNet  MATH  Google Scholar 

  15. van Glabbeek, R.J., Höfner, P.: Progress, Fairness and Justness in Process Algebra (2015). http://arxiv.org/abs/1501.03268

  16. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) Proc. PARLE. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  17. van Glabbeek, R.J., Vaandrager, F.W.: The Difference Between Splitting in \(n\) and \(n\mathord +1\). Information and Comput. 136(2), 109–142 (1997). doi:10.1006/inco.1997.2634

    Article  MathSciNet  MATH  Google Scholar 

  18. Goltz, U., Mycroft, A.: On the relationship of CCS and Petri nets. In: Paredaens, J. (ed.) Proceedings \( 11^{th}\) ICALP. LNCS, vol. 172, pp. 196–208. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  19. Goltz, U., Reisig, W.: The Non-Sequential Behaviour of Petri Nets. Information and Control 57(2–3), 125–147 (1983). doi:10.1016/S0019-9958(83)80040-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  21. Loogen, R., Goltz, U.: Modelling nondeterministic concurrent processes with event structures. Fundamenta Informaticae 14(1), 39–74 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Mazurkiewicz, A.W., Ochmanski, E., Penczek, W.: Concurrent Systems and Inevitability. TCS 64(3), 281–304 (1989). doi:10.1016/0304-3975(89)90052-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition Petri nets. Mathematical Structures in Computer Science 7(4), 359–397 (1997). doi:10.1017/S0960129597002314

    Article  MathSciNet  MATH  Google Scholar 

  24. Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, chap. 19. Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242 (1990). Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, of which an earlier version appeared as A Calculus of Communicating Systems. LNCS, vol. 92. Springer (1980). doi:10.1007/3-540-10235-3

  25. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I. TCS 13(1), 85–108 (1981). doi:10.1016/0304-3975(81)90112-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Olderog, E.-R.: Operational Petri net semantics for CCSP. In: Rozenberg, G. (ed.) Advances in Petri Nets 1987. LNCS, vol. 266, pp. 196–223. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  27. Olderog, E.-R.: Nets, Terms and Formulas: Three Views of Concurrent Processes and their Relationship. Cambridge Tracts in Theor. Comp. Sc. 23. Cambridge University Press (1991)

    Google Scholar 

  28. Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating processes. Acta Informatica 23, 9–66 (1986). doi:10.1007/BF00268075

    Article  MathSciNet  MATH  Google Scholar 

  29. Petri, C.A.: Non-sequential processes. Internal Report GMD-ISF-77.05, GMD, St. Augustin (1977)

    Google Scholar 

  30. Plotkin, G.D.: A Structural Approach to Operational Semantics. The Journal of Logic and Algebraic Programming 60–61, 17–139 (2004). doi:10.1016/j.jlap.2004.05.001. Originally appeared in 1981

    MathSciNet  MATH  Google Scholar 

  31. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE (1977). doi:10.1109/SFCS.1977.32

  32. Rabinovich, A., Trakhtenbrot, B.A.: Behavior Structures and Nets. Fundamenta Informaticae 11(4), 357–404 (1988)

    MathSciNet  MATH  Google Scholar 

  33. Reisig, W.: Petri nets – an introduction. EATCS Monographs on Theoretical Computer Science, vol. 4. Springer (1985). doi:10.1007/978-3-642-69968-9

  34. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies. Springer (2013). doi:10.1007/978-3-642-33278-4

  35. Winskel, G.: A new definition of morphism on Petri nets. In: Fontet, M., Mehlhorn, K. (eds.) STACS 84. LNCS, vol. 166, pp. 140–150. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  36. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Applications and Relationships to Other Models of Concurrency. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob J. van Glabbeek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Glabbeek, R.J. (2015). Structure Preserving Bisimilarity, Supporting an Operational Petri Net Semantics of CCSP. In: Meyer, R., Platzer, A., Wehrheim, H. (eds) Correct System Design. Lecture Notes in Computer Science(), vol 9360. Springer, Cham. https://doi.org/10.1007/978-3-319-23506-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23506-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23505-9

  • Online ISBN: 978-3-319-23506-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics