Skip to main content

3D Augmented Reality Based Orthopaedic Interventions

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 23))

Abstract

Augmented reality (AR) techniques, which can merge virtual computer-generated guidance information into real medical interventions, help surgeons obtain dynamic “see-through” scenes during orthopaedic interventions. Among various AR techniques, 3D integral videography (IV) image overlay is a promising solution because of its simplicity in implementation as well as the ability to produce a full parallax augmented natural view for multiple observers and improve surgeons’ hand-eye coordination. To obtain a precise fused result, patient-3D image registration is a vital technique in the IV overlay based orthopaedic interventions. Marker or marker-less based registration techniques are alternative depending on a particular clinical application. According to accurate AR information, minimally invasive therapy including cutting, drilling, implantation and other related operations, can be performed more easily and safely. This chapter reviews related augmented reality techniques for image-guided surgery and analyses several examples about clinical applications. Eventually, we discuss the future development of 3D AR based orthopaedic interventions.

Xinran Zhang and Zhencheng Fan—equally contributed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cleary K, Peters TM (2010) Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng 12:119–142

    Article  Google Scholar 

  2. DiGioia AM III, Jaramaz B, Colgan BD (1998) Computer assisted orthopaedic surgery: image guided and robotic assistive technologies. Clin Orthop Relat Res 354:8–16

    Article  Google Scholar 

  3. Peters T, Cleary K (2008) Image-guided interventions: technology and applications. Springer, Berlin

    Google Scholar 

  4. Liao H, Edwards PJ (2013) Introduction to the special issues of mixed reality guidance of therapy-Towards clinical implementation. Comput Med Imag Gr Off J Comput Med Imaging Soc 37.2: 81

    Google Scholar 

  5. Suenaga H, Tran HH, Liao H et al (2013) Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study. Int J Oral Sci 5(2):98–102

    Article  Google Scholar 

  6. Lamata P, Ali W, Cano A et al (2010) Augmented reality for minimally invasive surgery: overview and some recent advances. Augment Real 73–98

    Google Scholar 

  7. Sauer F, Vogt S, Khamene A (2008) Augmented reality. In: Image-guided interventions. Springer, US, pp 81–119

    Google Scholar 

  8. Fichtinger G, Deguet A, Masamune K, et al (2004) Needle insertion in CT scanner with image overlay–cadaver studies. In: Medical image computing and computer-assisted intervention–MICCAI 2004. Springer, Berlin, pp 795–803

    Google Scholar 

  9. Tran HH, Suenaga H, Kuwana K et al (2011) Augmented reality system for oral surgery using 3D auto stereoscopic visualization. In: Medical image computing and computer-assisted intervention–MICCAI 2011. Springer, Berlin, pp 81–88

    Google Scholar 

  10. Wang J, Suenaga H, Hoshi K et al (2014) Augmented reality navigation with automatic marker-free image registration using 3D image overlay for dental surgery. IEEE Trans Biomed Eng 61(4):1295–1303

    Article  Google Scholar 

  11. Liao H, Sakuma I, Dohi T (2007) Development and evaluation of a medical autostereoscopic image integral videography for surgical navigation. In: IEEE/ICME international conference on complex medical engineering, 2007, CME 2007. IEEE, New York

    Google Scholar 

  12. Lippmann G (1908) La Photographie integrale. Academie des Sciences, Comtes Rendus, pp 446–451

    Google Scholar 

  13. Liao H, Nakajima S, Iwahara M et al (2001) Intra-operative real-time 3-D information display system based on integral videography. In: Medical image computing and computer-assisted intervention–MICCAI 2001. Springer, Berlin

    Google Scholar 

  14. Liao H, Nomura K, Dohi T (2005) Autostereoscopic integral photography imaging using pixel distribution of computer graphics generated image. In: ACM SIGGRAPH 2005 Posters. ACM, Texas

    Google Scholar 

  15. Liao H, Dohi T, Nomura K (2011) Autostereoscopic 3D display with long visualization depth using referential viewing area-based integral photography. IEEE Trans Vis Comput Gr 17(11):1690–1701

    Article  Google Scholar 

  16. Wang J, Sakuma I, Liao H (2013) A hybrid flexible rendering pipeline for real-time 3D medical imaging using GPU-accelerated integral videography. Int J Comput Assist Radiol Surg S287–S288

    Google Scholar 

  17. Wang J, Suenaga H, Liao H et al (2014) Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Comput Med Imaging Graph 147:159

    Google Scholar 

  18. Liao H, Inomata T, Sakuma I et al (2010) 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay. IEEE Trans Biomed Eng 57(6):1476–1486

    Article  Google Scholar 

  19. Liao H, Hata N, Nakajima S et al (2004) Surgical navigation by autostereoscopic image overlay of integral videography. IEEE Trans Inf Technol Biomed 8(2):114–121

    Article  Google Scholar 

  20. Lamata P, Ali W, Cano A et al (2010) Augmented reality for minimally invasive surgery: overview and some recent advances. Augment Real 73–98

    Google Scholar 

  21. Arun S, Huang S, Blostein D (1987) Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell 5:698–700

    Google Scholar 

  22. Eggers G, Mühling J, Marmulla R (2006) Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg 35(12):1081–1095

    Article  Google Scholar 

  23. Marmulla R, Hassfeld S, Lüth T et al (2003) Laser-scan-based navigation in cranio-maxillofacial surgery. J Cranio-Maxillofac Surg 31(5):267–277

    Article  Google Scholar 

  24. Hassfeld S, Mühling J (2001) Computer assisted oral and maxillofacial surgery–a review and an assessment of technology. Int J Oral Maxillofac Surg 30(1):2–13

    Article  Google Scholar 

  25. Liao H, Inomata T, Hata N et al (2004) Integral videography overlay navigation system using mutual information-based registration. In: Medical imaging and augmented reality. Springer, Berlin, pp 361–368

    Google Scholar 

  26. Luebbers HT, Messmer P, Obwegeser JA et al (2008) Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery. J Cranio-Maxillofac Surg 36(2):109–116

    Article  Google Scholar 

  27. Hostettler A, Nicolau SA, Rémond Y et al (2010) A real-time predictive simulation of abdominal viscera positions during quiet free breathing. Prog Biophys Mol Biol 103(2):169–184

    Article  Google Scholar 

  28. Nicolau S, Soler L, Mutter D et al (2011) Augmented reality in laparoscopic surgical oncology. Surg Oncol 20(3):189–201

    Article  Google Scholar 

  29. Fitzpatrick M (2009) Fiducial registration error and target registration error are uncorrelated. In: SPIE Medical Imaging. International Society for Optics and Photonics, Bellingham

    Google Scholar 

  30. Liao H, Ishihara H, Tran H et al (2010) Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay. Comput Med Imaging Graph 34(1):46–54

    Article  Google Scholar 

  31. Seichi A, Takeshita K, Nakajima S et al (2005) Revision cervical spine surgery using transarticular or pedicle screws under a computer-assisted image-guidance system. J Orthop Sci 10(4):385–390

    Article  Google Scholar 

  32. Herlambang N, Liao H, Matsumiya K et al (2005) Realtime integral videography using intra-operative 3-D ultrasound for minimally invasive heart surgery. J Jpn Soc Comput Aided Surg J JSCAS 7.2:163–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongen Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, X., Fan, Z., Wang, J., Liao, H. (2016). 3D Augmented Reality Based Orthopaedic Interventions. In: Zheng, G., Li, S. (eds) Computational Radiology for Orthopaedic Interventions. Lecture Notes in Computational Vision and Biomechanics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-23482-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23482-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23481-6

  • Online ISBN: 978-3-319-23482-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics