Skip to main content

Quantum Logic Circuits and Quantum Computing

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 37))

Abstract

Quantum computing is a vast and fascinating interdisciplinary project of the 21st century. Research and development in this monumental enterprise involve just about every field of science and engineering (Chen et al. in Mathematics of quantum computation and quantum technology. Taylor & Francis Group, LLC, Chapman & Hall/CRC, USA, 2008). At the dawn of the third millennium the dreams seem to become true due to quantum computing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Chen, L. Kauffman, S.J. Lomonaco (eds.), Mathematics of Quantum Computation and Quantum Technology (Taylor & Francis Group, LLC, Chapman & Hall/CRC, USA, 2008)

    MATH  Google Scholar 

  2. J.M. Wing, Five deep questions in computing. Commun. ACM 51(1), 58–60 (2008)

    Article  Google Scholar 

  3. R.C. Vidya, H.D. Phaneendra, M.S. Shivakumar, “Quantum algorithms and hard problems,” Proceedings of the IEEE 5 th International Conference on Cognitive Informatics (ICCI’06), (2006), pp. 783–787

    Google Scholar 

  4. A. Narayanan, “An introductory tutorial to quantum computing,” IEE Colloquium on Quantum Computing: Theory, Applications and Implications, (London, UK, 1997), pp. 1995–1997

    Google Scholar 

  5. A. Narayanan, “Quantum computing for beginners,” Proceedings of IEEE Congress on Evolutionary Computation (CEC 99), (1999), pp. 2231–2238

    Google Scholar 

  6. M. Knights, “The art of quantum computing,” Engineering & Technology, (2007), pp. 30–34

    Google Scholar 

  7. N.D. Mermin, “Quantum Computer Science: An Introduction,” (Cambridge University Press, 2007)

    Google Scholar 

  8. G. Brassard, I. Chuang, S. Lloyd, C. Monroe, Quantum computing, Proc. Natl. Acad. Sci., USA, 95, 11032–11033 (1998)

    Google Scholar 

  9. D. Franklin, F.T. Nano, Quantum and Molecular Computing: Implications to High Level Design and Validation, ed. by S.K. Shukla, R.I. Bahar Chapter 8: Challenges in Reliable Quantum Computing (Kluwer Academic Publishers, Netherlands, 2004), pp. 247–266

    Google Scholar 

  10. I.S. Oliveira, T.J. Bonagamba, R.S. Sarthour, J.C.C. Freitas, E.R. deAzevedo, NMR Quantum Information Processing (Elsevier B. V, Netherlands, 2007)

    Google Scholar 

  11. R. Sawae, Y. Mori, M. Kawamura, T. Sakata, K. Takarabe, “The Deutsch-Jozsa algorithm and the bulk ensemble NMR quantum computer,” Proceedings of IEEE PhysConf 2005 (St. Petersburg, Russia, 2005), pp. 776–777

    Google Scholar 

  12. Y. Maguire, E. Boyden, N. Gershenfeld, Toward a Table—Top Quantum Computer. IBM Systems Journal 39(3&4), 823–839 (2000)

    Article  Google Scholar 

  13. P. Kok, Limitations on building single-photon-resolution detection devices. IEEE J. Sel. Top. Quantum Electron. 9(6), 1498–1501 (2003)

    Article  Google Scholar 

  14. J.D. Franson, B.C. Jacobs, T.B. Pittman, “Hybrid Approach For Optical Quantum Computing,” International Quantum Electronics Conference (IQEC) (San Francisco, CA, USA, 2004), pp. 33–34

    Google Scholar 

  15. T. Kim, Applications of single-photon two-qubit quantum logic to the quantum information science, Ph.D. thesis (Department of Physics, Massachusetts Institute of Technology, USA, June 2008)

    Google Scholar 

  16. A. Kuhn, “Quantum Information Processing With Single Photons From Cavity-QED Systems,” International Quantum Electronics Conference (IQEC), San Francisco, CA, USA, pp. 557–558, May 21, 2004

    Google Scholar 

  17. D. Jaksch, T. Calarco, J. I. Cirac, P. Zoller, “Quantum computing with quantum optical systems,” IEEE International Conference on Quantum Electronics (2000), p. 211

    Google Scholar 

  18. D.D. Thaker, T.S. Metodi, A.W. Cross, I.L. Chuang, F.T. Chong, “Quantum Memory Hierarchies: Efficient Designs To Match Available Parallelism In Quantum Computing,” Proceedings of the IEEE 33 rd International Symposium on Computer Architecture (ISCA’06) (Boston, MA, USA, 2006), pp. 378–390

    Google Scholar 

  19. S.L. Braunstein (ed.), Quantum Computing: Where Do We Want To Go Tomorrow? (WILELY-VCH Verlag GmbH, Germany, 1999), pp. 23–93

    Google Scholar 

  20. M. Weitz, Towards controlling larger quantum systems: from laser cooling to quantum computing. IEEE J. Quantum Electron. 36(12), 1346–1357 (2000)

    Article  Google Scholar 

  21. H.J. Briegel, I.J. Cirac, C. Gardiner, D. Jaksch, P. Zoller, “Quantum computing in optical lattices,” IEEE Conference on Quantum Electronics and Laser Science (QELS’99) (Washington, DC, USA, 1999), p. 112

    Google Scholar 

  22. D. Steel, J. Cheng, Y. Wu, G. Dutt, X. Li, P.R. Berman, “Coherent Optical Manipulation Of Quantum Dot Spins: A Path Into Quantum Computing,” Proceedings of Quantum Electronics and Laser Science Conference (QELS) (Baltimore, Maryland, USA, 2005), p. 132

    Google Scholar 

  23. R.W. Keyes, Challenges for quantum computing with solid-state devices. IEEE Comput. 65–69, (2005)

    Google Scholar 

  24. D.P. DiVincenzo, “Prospects For Quantum Computing,” IEEE International Electron Devices Meeting (IEDM 00) (San Francisco, CA, USA, 2000), pp. 12–15

    Google Scholar 

  25. S.D. Sarma, J. Fabian, X. Hu, I. Zutic, Theoretical perspectives on spintronics and spin-polarized transport. IEEE Trans. Magn. 36(5), 2821–2826 (2000)

    Article  Google Scholar 

  26. B. Ruggiero, P. Delsing, C. Granata, Y. Pashkin, P. Silvestrini (eds.), Quantum Computation In Solid State Systems (Springer Science + Business Media, Inc., 2006)

    Google Scholar 

  27. V.K. Semenov, G.V. Danilov, D.V. Averin, Classical and quantum operation modes of the reversible Josephson-junction logic circuits. IEEE Trans. Appl. Supercond. 17(2), 455–461 (2007)

    Article  Google Scholar 

  28. K.D. Osborn, J.A. Strong, A.J. Sirois, R.W. Simmonds, Frequency-tunable Josephson junction resonator for quantum computing. IEEE Trans. Appl. Supercond. 17(2), 166–168 (2007)

    Article  Google Scholar 

  29. P. Carelli, M.G. Castellano, F. Chiarello, C. Cosmelli, R. Leoni, G. Torrioli, SQUID systems for macroscopic quantum coherence and quantum computing. IEEE Trans. Appl. Supercond. 11(1), 210–214 (2001)

    Article  Google Scholar 

  30. J. Han, P. Jonker, “On Quantum Computing With Macroscopic Josephson qubits,” Proceedings of IEEE Conference on Nanotechnology, (IEEE-NANO 2002) (2002), pp. 305–308

    Google Scholar 

  31. K.K. Berggren, Quantum computing with superconductors. Proc. IEEE 92(10), 1630–1638 (2004)

    Article  Google Scholar 

  32. G. Rotoli, Unconventional Josephson junction arrays for qubit devices. IEEE Trans. Appl. Supercond. 15(2), 852–855 (2005)

    Article  Google Scholar 

  33. H. Paik, F.W. Strauch, R.C. Ramos, A.J. Berkley, H. Xu, S.K. Dutta, P.R. Johnson, A.J. Dragt, J.R. Anderson, C.J. Lobb, F.C. Wellstood, Cooper-pair box as a variable capacitor. IEEE Trans. Appl. Supercond. 15(2), 884–887 (2005)

    Article  Google Scholar 

  34. J.J. Vartiainen, Unitary Transformations For Quantum Computing, Ph.D thesis (Department of Engineering Physics and Mathematics, Helsinki University of Technology, Finland, 2005)

    Google Scholar 

  35. G. Bourianoff, The future of nanocomputing, IEEE Comput. (2003), pp. 44–53

    Google Scholar 

  36. S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani, Algorithms (McGraw-Hill, 2006)

    Google Scholar 

  37. M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C.H. Yu, K. Chung, H. Jee, B. Kim, Y. Kim, Evolutionary approach to quantum and reversible circuits synthesis. Artif. Intell. Rev. 20(3–4), 361–417 (2003)

    Article  MATH  Google Scholar 

  38. J. Mullins, The topsy turvy world of quantum computing. IEEE Spec. (2001), pp. 42–49

    Google Scholar 

  39. V.V. Shende, S.S. Bullock, I.L. Markov, Synthesis of quantum logic circuits. IEEE Trans. Comput. Aided-Design 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  40. S. Imre and F. Balazs, Quantum Computing and Communications: An Engineering Approach (John Wiley & Sons Ltd, 2005)

    Google Scholar 

  41. T.S. Metodi, F.T. Chong, Quantum Computing For Computer Architects (Morgan & Claypool Publishers, USA, 2006)

    Google Scholar 

  42. M.L. Bellac, A Short Introduction to Quantum Information and Quantum Computation (Cambridge University Press, 2006)

    Google Scholar 

  43. W. Steeb, Y. Hardy, Problems and Solutions in Quantum Computing and Quantum Information (World Scientific Publishing Co. Pte. Ltd., Singapore, 2004)

    Book  MATH  Google Scholar 

  44. A. Glassner, Quantum computing, part 2. IEEE Comput Graphics Appl. (2001), pp. 86–95

    Google Scholar 

  45. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, UK, 2000)

    MATH  Google Scholar 

  46. A.N. Al-Rabadi, Reversible Logic Synthesis: From Fundamentals To Quantum Computing (Springer, Verlag, 2004)

    Google Scholar 

  47. P. Kaye, R. Laflamme, M. Mosca, An Introduction To Quantum Computing (Oxford University Press Inc., 2007)

    Google Scholar 

  48. A. Glassner, Quantum computing, part 3. IEEE Comput. Graphics Appl. (2001) pp. 72–82

    Google Scholar 

  49. M. Pavičić, Quantum Computation and Quantum Communication: Theory and Experiments (Springer Science + Business Media Inc, USA, 2006)

    Google Scholar 

  50. A.N. Al-Rabadi, “Spectral Techniques in the Reversible Logic Circuit Synthesis of Switching Functions,” Proceedings of the International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP) (Vienna, Austria, 2004), pp. 271–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleem Mohammed Ridha Taha .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taha, S.M.R. (2016). Quantum Logic Circuits and Quantum Computing. In: Reversible Logic Synthesis Methodologies with Application to Quantum Computing. Studies in Systems, Decision and Control, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-23479-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23479-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23478-6

  • Online ISBN: 978-3-319-23479-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics