Skip to main content

Kidney Imaging

  • Chapter
Interventional Urology

Abstract

Renal imaging plays an essential role in the diagnoses and evaluation of renal pathology. In urology, it is most commonly used in the evaluation for hematuria, trauma, abdominal pain, and workup for genitourinary cancers. It is also utilized as a follow-up study for nephrolithiasis and surveillance of masses. Imaging modalities that play an important role in detecting disease regression, progression, recurrence, or metastasis include computerized tomography (CT), magnetic resonance imaging (MRI), diagnostic ultrasound (US), bone scan, and plain film x-ray. Positron emission tomography (PET) scanning with labeled antibody is under evaluation for imaging of renal cell carcinoma (RCC) and may play a role in the future, but it is currently not a standard or recommended diagnostic measure. Due to superior diagnostic accuracy, CT and MRI are both used for detection and characterization of neoplasms suspicious for RCC. Kidney imaging has the ability to allow for a better surgical planning prior to either nephron-sparing surgery or radical nephrectomy for renal tumors. This chapter will focus on different modalities available to diagnose and differentiate renal pathology, such as renal mass, obstruction, calculi, and lymphoma. We will focus mostly on current and emerging techniques and modalities for the diagnosis of RCC and the role imaging plays as a biomarker of RCC subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donat SM, et al. Follow-up for clinically localized renal neoplasms: AUA Guideline. J Urol. 2013;190(2):407–16.

    Article  PubMed  Google Scholar 

  2. Fernbach SK, Maizels M, Conway JJ. Ultrasound grading of hydronephrosis: introduction to the system used by the Society for Fetal Urology. Pediatr Radiol. 1993;23(6):478–80.

    Article  CAS  PubMed  Google Scholar 

  3. Arrabal-Polo MA, et al. Calcium nephrolithiasis and bone demineralization: pathophysiology, diagnosis, and medical management. Curr Opin Urol. 2014;24(6):633–88.

    Article  PubMed  Google Scholar 

  4. Semins MJ, Matlaga BR. Kidney stones during pregnancy. Nat Rev Urol. 2014;11(3):163–8.

    Article  PubMed  Google Scholar 

  5. Masselli G, et al. Imaging of stone disease in pregnancy. Abdom Imaging. 2013;38(6):1409–14.

    Article  PubMed  Google Scholar 

  6. Dhar M, Denstedt JD. Imaging in diagnosis, treatment, and follow-up of stone patients. Adv Chronic Kidney Dis. 2009;16(1):39–47.

    Article  PubMed  Google Scholar 

  7. Smith-Bindman R, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med. 2014;371(12):1100–10.

    Article  CAS  PubMed  Google Scholar 

  8. Kuwahara M, et al. Computed tomography and composition of renal calculi. Urol Res. 1984;12(2):111–3.

    Article  CAS  PubMed  Google Scholar 

  9. Kalb B, et al. Acute abdominal pain: is there a potential role for MRI in the setting of the emergency department in a patient with renal calculi? J Magn Reson Imaging. 2010;32(5):1012–23.

    Article  PubMed  Google Scholar 

  10. Krepkin K, et al. Dynamic contrast-enhanced MR renography for renal function evaluation in ureteropelvic junction obstruction: feasibility study. AJR Am J Roentgenol. 2014;202(4):778–83.

    Article  PubMed  Google Scholar 

  11. Sasamori H, et al. Utility of apparent diffusion coefficients in the evaluation of solid renal tumors at 3T. Magn Reson Med Sci. 2014;13(2):89–95.

    Article  PubMed  Google Scholar 

  12. Yoshida S, et al. Role of diffusion-weighted magnetic resonance imaging in predicting sensitivity to chemoradiotherapy in muscle-invasive bladder cancer. Int J Radiat Oncol Biol Phys. 2012;83(1):e21–7.

    Article  PubMed  Google Scholar 

  13. Israel GM, Bosniak MA. Renal imaging for diagnosis and staging of renal cell carcinoma. Urol Clin North Am. 2003;30(3):499–514.

    Article  PubMed  Google Scholar 

  14. Dyer R, DiSantis DJ, McClennan BL. Simplified imaging approach for evaluation of the solid renal mass in adults. Radiology. 2008;247(2):331–43.

    Article  PubMed  Google Scholar 

  15. Whelan TF. Guidelines on the management of renal cyst disease. Can Urol Assoc J. 2010;4(2):98–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bosniak MA. The use of the Bosniak classification system for renal cysts and cystic tumors. J Urol. 1997;157(5):1852–3.

    Article  CAS  PubMed  Google Scholar 

  17. Curry NS, Cochran ST, Bissada NK. Cystic renal masses: accurate Bosniak classification requires adequate renal CT. AJR Am J Roentgenol. 2000;175(2):339–42.

    Article  CAS  PubMed  Google Scholar 

  18. Ellimoottil C, et al. New modalities for the evaluation and surveillance of complex renal cysts. J Urol. 2014;192(6):1604–11.

    Article  PubMed  Google Scholar 

  19. Siracusano S, et al. The current role of contrast-enhanced ultrasound (CEUS) imaging in the evaluation of renal pathology. World J Urol. 2011;29(5):633–8.

    Article  PubMed  Google Scholar 

  20. Zeccolini G, et al. Comparison of Contrast-Enhanced Ultrasound Scan (CEUS) and MRI in the follow-up of cryoablation for small renal tumors. Experience on 25 cases. Urologia. 2014;81 Suppl 23:1–8.

    Article  Google Scholar 

  21. Sheth S, Fishman EK. Multi-detector row CT of the kidneys and urinary tract: techniques and applications in the diagnosis of benign diseases. Radiographics. 2004;24(2):e20.

    Article  PubMed  Google Scholar 

  22. Yuh BI, et al. Comparison of nephrographic with excretory phase helical computed tomography for detecting and characterizing renal masses. Can Assoc Radiol J. 2000;51(3):170–6.

    CAS  PubMed  Google Scholar 

  23. Zhu YH, et al. Low enhancement on multiphase contrast-enhanced CT images: an independent predictor of the presence of high tumor grade of clear cell renal cell carcinoma. AJR Am J Roentgenol. 2014;203(3):W295–300.

    Article  PubMed  Google Scholar 

  24. Jinzaki M, et al. Double-phase helical CT of small renal parenchymal neoplasms: correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr. 2000;24(6):835–42.

    Article  CAS  PubMed  Google Scholar 

  25. Wang JH, et al. Dynamic CT evaluation of tumor vascularity in renal cell carcinoma. AJR Am J Roentgenol. 2006;186(5):1423–30.

    Article  PubMed  Google Scholar 

  26. Mytsyk Y, et al. Value of the diffusion-weighted MRI in the differential diagnostics of malignant and benign kidney neoplasms – our clinical experience. Pol J Radiol. 2014;79:290–5.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ozulker T, et al. A prospective diagnostic accuracy study of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun. 2011;32(4):265–72.

    Article  PubMed  Google Scholar 

  28. Nakhoda Z, et al. Assessment of the diagnostic performance of (18)F-FDG-PET/CT for detection and characterization of solid renal malignancies. Hell J Nucl Med. 2013;16(1):19–24.

    PubMed  Google Scholar 

  29. Khandani AH, et al. PET/CT with (124)I-cG250: great potential and some open questions. AJR Am J Roentgenol. 2014;203(2):261–2.

    Article  PubMed  Google Scholar 

  30. Khandani AH, Rathmell WK. Positron emission tomography in renal cell carcinoma: an imaging biomarker in development. Semin Nucl Med. 2012;42(4):221–30.

    Article  PubMed  Google Scholar 

  31. Macis G, et al. Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging. Urologia. 2013;80(1):29–41.

    Article  PubMed  Google Scholar 

  32. Divgi CR, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8(4):304–10.

    Article  CAS  PubMed  Google Scholar 

  33. Okhunov Z, et al. The comparison of three renal tumor scoring systems: C-Index, P.A.D.U.A., and R.E.N.A.L. nephrometry scores. J Endourol. 2011;25(12):1921–4.

    Article  PubMed  Google Scholar 

  34. Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844–53.

    Article  PubMed  Google Scholar 

  35. Kolla SB, Spiess PE, Sexton WJ. Interobserver reliability of the RENAL nephrometry scoring system. Urology. 2011;78(3):592–4.

    Article  PubMed  Google Scholar 

  36. Bata P, et al. Clear cell renal cell carcinoma and papillary renal cell carcinoma: differentiation of distinct histological types with multiphase CT. Diagn Interv Radiol. 2013;19(5):387–92.

    PubMed  Google Scholar 

  37. Pierorazio PM, et al. Multiphasic enhancement patterns of small renal masses (</=4 cm) on preoperative computed tomography: utility for distinguishing subtypes of renal cell carcinoma, angiomyolipoma, and oncocytoma. Urology. 2013;81(6):1265–71.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bird VG, et al. Differentiation of oncocytoma and renal cell carcinoma in small renal masses (<4 cm): the role of 4-phase computerized tomography. World J Urol. 2011;29(6):787–92.

    Article  CAS  PubMed  Google Scholar 

  39. Kopp RP, et al. Differentiation of clear from non-clear cell renal cell carcinoma using CT washout formula. Can J Urol. 2013;20(3):6790–7.

    PubMed  Google Scholar 

  40. Choi YA, et al. Subtype differentiation of renal cell carcinoma using diffusion-weighted and blood oxygenation level-dependent MRI. AJR Am J Roentgenol. 2014;203(1):W78–84.

    Article  PubMed  Google Scholar 

  41. Wang H, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257(1):135–43.

    Article  PubMed  Google Scholar 

  42. Pedrosa I, Alsop DC, Rofsky NM. Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer. 2009;115(10 Suppl):2334–45.

    Article  PubMed  Google Scholar 

  43. Pedrosa I, et al. MR classification of renal masses with pathologic correlation. Eur Radiol. 2008;18(2):365–75.

    Article  PubMed  Google Scholar 

  44. Mileto A, et al. Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology. 2014;273(3):813–20.

    Article  PubMed  Google Scholar 

  45. Raman SP, et al. Chromophobe renal cell carcinoma: multiphase MDCT enhancement patterns and morphologic features. AJR Am J Roentgenol. 2013;201(6):1268–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Bratslavsky MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chehab, M., Bratslavsky, G. (2016). Kidney Imaging. In: Rastinehad, A., Siegel, D., Pinto, P., Wood, B. (eds) Interventional Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-23464-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23464-9_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23463-2

  • Online ISBN: 978-3-319-23464-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics