Joint European Conference on Machine Learning and Knowledge Discovery in Databases

ECML PKDD 2015: Machine Learning and Knowledge Discovery in Databases pp 267-270

CardioWheel: ECG Biometrics on the Steering Wheel

  • André Lourenço
  • Ana Priscila Alves
  • Carlos Carreiras
  • Rui Policarpo Duarte
  • Ana Fred
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9286)

Abstract

Monitoring physiological signals while driving is a recent trend in the automotive industry. We present CardioWheel, a state-of-the-art machine learning solution for driver biometrics based on electrocardiographic signals (ECG). The presented system pervasively acquires heart signals from the users hands through sensors embedded in the steering wheel, to recognize the driver’s identity. It combines unsupervised and supervised machine learning algorithms, and is being tested in real-world scenarios, illustrating one of the potential uses of this technology.

Keywords

Electrocardiographic signals (ECG) Biometrics Automotive industry Personalization Security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cisco: Consumers Desire More Automated Automobiles, According to Cisco Study (2014). http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1184392
  2. 2.
    Gilpin, L.: Ford moves toward facial recognition and gesture UI in the car (2014). http://www.zdnet.com/article/ford-moves-toward-facial-recognition-and-gesture-ui-in-the-car/
  3. 3.
    Lavrinc, D.: Ford Wants To Let You Open Your Car With Your Eyeballs (2015). http://jalopnik.com/ford-wants-to-let-you-open-your-car-with-your-eyeballs-1683328257
  4. 4.
    Lourenço, A., Silva, H., Lourenço, R.L., Leite, P.L., Fred, A.L.N.: Real time electrocardiogram segmentation for finger based ECG biometrics. In: Proc International Conf. on Bio-inspired Systems and Signal Processing (BIOSIGNALS), pp. 49–54, February 2012Google Scholar
  5. 5.
    Lourenço, A., Silva, H., Carreiras, C., Fred, A.: Outlier detection in non-intrusive ECG biometric system. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 43–52. Springer, Heidelberg (2013) Google Scholar
  6. 6.
    Lourenço, A., Silva, H., Fred, A.L.N.: ECG-based biometrics: A real time classification approach. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6, September 2012Google Scholar
  7. 7.
    Silva, H., Lourenço, A., Lourenço, R., Leite, P., Coutinho, D., Fred, A.: Study and evaluation of a single differential sensor design based on electro-textile electrodes for ECG biometrics applications. In: Proc. IEEE Sensors Conference, pp. 1764–1767, October 2011Google Scholar
  8. 8.
    Silva, H., Gamboa, H., Fred, A.: Applicability of lead \(v_2\) ECG measurements in biometrics. In: Proc. of the Int. eHealth, Telemedicine and Health ICT Forum (Med-e-Tel), pp. 177–180, April 2007Google Scholar
  9. 9.
    Silva, H., Lourenço, A., Canento, F., Fred, A., Raposo, N.: ECG biometrics: principles and applications. In: Proc. of the 6th Conf. on Bio-Inspired Systems and Signal Processing (BIOSIGNALS) (2013)Google Scholar
  10. 10.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • André Lourenço
    • 1
    • 2
  • Ana Priscila Alves
    • 1
    • 2
  • Carlos Carreiras
    • 1
    • 2
  • Rui Policarpo Duarte
    • 1
  • Ana Fred
    • 1
    • 2
  1. 1.CardioID Technologies LdaLisbonPortugal
  2. 2.Instituto de TelecomunicaçõesLisbonPortugal

Personalised recommendations