How a Computational Method Can Help to Improve the Quality of River Flood Prediction by Simulation

  • Adriana Gaudiani
  • Emilio Luque
  • Pablo García
  • Mariano Re
  • Marcelo Naiouf
  • Armando De Giusti
Part of the Progress in IS book series (PROIS)


High performance computing has become a fundamental technology essential for computer simulation. Modelling and computational simulation provide powerful tools which enable flood event forecasting. In order to reduce flood damage, we have developed a methodology focused on enhancing a flood simulator minimizing the number of errors between simulated and observed results by using a two-phase optimization methodology via simulation. In this research, we implemented this approach to find the best solution or adjusted set of simulator input parameters. As a result of this, we achieved an improvement of up to 14 % which, for example, represents a significant difference of 0.5–1 m of water level along whole Paraná River basin. In order to find the adjusted set of input parameters, we reduced the search space using a Monte Carlo + clustering K-Means method. Therefore, an exhaustive search over the reduced search space led us to get a “good solution”. In summary, we propose add an improvement process on the classical computer model output to improve model quality.


Flood simulation Simulator tuning Optimization methodology Parametric simulation 



This research has been supported by the MICINN Spain under contract TIN2007-64974, the MINECO (MICINN) Spain under contract TIN2011-24384 and it was partially supported by the research program of Informatics Research Institute III-LIDI, Faculty of Computer Science, Universidad Nacional de La Plata. We are very grateful for the data provided by INA and we appreciate the guidance received from researchers at INA Hydraulic Laboratory.


  1. 1.
    K. Hansson, M. Danielson y L. Ekenberg, «A framework for evaluation of flood management strategies,» Journal of Environmental Management, vol. 86, pp. 465–480, 2008.CrossRefGoogle Scholar
  2. 2.
    L. Hluchy, V. Tran, J. Astalos, M. Dobrucky, G. Nguyen y D. Froehlich, «Parallel Flood Modeling Systems,» de Computational Science ICCS 2002, Berlin, Heidelberg, 2002, pp. 543–551.Google Scholar
  3. 3.
    A. a. S. S. Bárdossy, «Robust estimation of hydrological model parameters,» Hydrology and Earth System Sciences Discussions, vol. 5, n° 3, pp. 1641–1675, 2008.Google Scholar
  4. 4.
    S. Balica, “Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison,” Environmental Modelling & Software, vol. 41, pp. 84–92, 2013.CrossRefGoogle Scholar
  5. 5.
    A. Gaudiani, E. Luque, P. García, M. Re, M. Naiouf and A. De Giusti, “Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction,” Procedia Computer Science, vol. 29, no. 0, pp. 299–309, 2014.Google Scholar
  6. 6.
    M. Taboada, E. Cabrera, M. L. Iglesias, F. Epelde and E. Luque, “An agent-based decision support system for hospitals emergency,” Procedia Computer Science, vol. 4, no. 0, pp. 1870–1879, 2011.Google Scholar
  7. 7.
    A. Menéndez, “Ezeiza V: un programa computacional para redes de canales,” Mecánica Computacional, vol. 16, pp. 63–71, Septiembre 1996.Google Scholar
  8. 8.
    A. Menéndez, “Three decades of development and application of numerical simulation tools at INA Hydraulics LAB,” Mecánica Computacional, vol. 21, pp. 2247–2266, Octubre 2002.Google Scholar
  9. 9.
    F. Saleh, A. Ducharne, N. Flipo, L. Oudin and E. Ledoux, “Impact of river bed morphology on discharge and water levels simulated by a 1D Saint-Venant hydraulic model at regional scale,” Journal of Hydrology, vol. 476, pp. 169–177, 2013.CrossRefGoogle Scholar
  10. 10.
    R. G. Sargent, “Verification and validation of simulation models,” in Winter Simulation Conference, Phoenix USA, 2000.Google Scholar
  11. 11.
    W. L. Oberkampf, J. C. Helton, C. A. Joslyn, S. F. Wojtkiewicz y S. Ferson, «Challenge problems: uncertainty in system response given uncertain parameters,» Reliability Engineering & System Safety, vol. 85, n° 1, pp. 11–19, 2004.Google Scholar
  12. 12.
    M. Saiduzzaman y S. Ray, «Comparison of Numerical Schemes for Shallow Water,» Global Journal of Science Frontier Research, vol. 13, n° 4-F, pp. 1–19, 2013.Google Scholar
  13. 13.
    M. B. Butts, P. J. T., M. Kristensen y H. Madsen, «An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation.,» Journal of Hydrology, vol. 298, n° 1–4, pp. 242–266, 2004.Google Scholar
  14. 14.
    F. Pappenberger, P. Matgen, K. Beven and L. Pfister, “Influence of uncertain boundary conditions and model structure on flood inundation predictions,” Advances in Water Resources, vol. 29, pp. 1430–1449, 2006.CrossRefGoogle Scholar
  15. 15.
    J. Warmink, J. Janssen, M. Booij y M. Krol, «Identification and classification of uncertainties in the application of environmental models,» Environmental Modelling & Software, vol. 25, n° 12, pp. 1518–1527, 2010.Google Scholar
  16. 16.
    H. d. Moel, J. Aerts y E. Koomen, «Development of flood exposure in the Netherlands during the 20th and 21st century.,» Global Environmental Change, vol. 21, n° 2, pp. 620–627, 2011.Google Scholar
  17. 17.
    A. Domeneghetti, A. Castellarin y A. Brath, «Assessing rating-curve uncertainty and its effects on hydraulic model calibration,» Hydrology and Earth System Sciences, vol. 16, pp. 1191–1202, 2012.Google Scholar
  18. 18.
    G. Latessa, “Modelo hidrodinámico del río Paraná para pronóstico hidrológico: Evaluación del performance y una propuesta de redefinición geométrica.,” INA – UBA, Buenos Aires, 2011.Google Scholar
  19. 19.
    P. Kraus, D. Boyle and F. Bäse, “Comparison of different efficiency criteria for hydrological model assessment,” Advances in Geosciences, vol. 5, pp. 89–97, 2005.CrossRefGoogle Scholar
  20. 20.
    I. A. Camilloni and V. R. Barros, “Extreme discharge events in the Paraná River and their climate forcing.,” Journal of Hydrology, vol. 278, pp. 94–106, 2003.CrossRefGoogle Scholar
  21. 21.
    F. Pappenberger, K. Beven, M. Horritt and M. Blazkova, “Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations,” Journal of Hydrology, vol. 302, no. 4, pp. 46–69, 2005.CrossRefGoogle Scholar
  22. 22.
    E. Cabrera, M. Taboada, M. L. Iglesias and E. Luque, “Simulation optimization for healthcare emergency departments,” Procedia Computer Science, vol. 9, pp. 1464–1473, 2012.CrossRefGoogle Scholar
  23. 23.
    E. Cabrera, M. Taboada, F. Epelde, M. L. Iglesias and E. Luque, “Optimization of emergency departments by agent-based modeling and simulation,” in Information Reuse and Integration (IRI), 2012 I.E. 13th International Conference, Las Vegas, 2012.Google Scholar
  24. 24.
    A. Gaudiani, E. Luque, P. García, M. Re, M. Naiouf and A. De Giusti, “Computational method for prediction enhancement of a river flood simulation,” in 28th International Conference on Informatics for Environmental Protection, Oldenburg, Germany, 2014.Google Scholar
  25. 25.
    D. Kroese, T. Taimre y Z. Botev, Handbook of Monte Carlo Methods, New York: John Wiley and Sons, 2011.Google Scholar
  26. 26.
    D. J. C. MacKay, Information Theory, Inference & Learning Algorithms, New York: Cambridge University Press, 2002.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adriana Gaudiani
    • 1
    • 4
  • Emilio Luque
    • 2
  • Pablo García
    • 3
  • Mariano Re
    • 3
  • Marcelo Naiouf
    • 4
  • Armando De Giusti
    • 4
  1. 1.Science InstituteUniversidad Nacional de General SarmientoBuenos AiresArgentina
  2. 2.Computer Architecture and Operating Systems DepartmentUniversidad Autónoma de BarcelonaBarcelonaEspaña
  3. 3.Hydraulic Computational ProgramHydraulic Laboratory, National Institute of WaterBuenos AiresArgentina
  4. 4.Informatics Research Institute LIDIUniversidad Nacional de La PlataBuenos AiresArgentina

Personalised recommendations