Skip to main content

Arithmetic invariant theory II: Pure inner forms and obstructions to the existence of orbits

  • Chapter
  • First Online:
Representations of Reductive Groups

Part of the book series: Progress in Mathematics ((PM,volume 312))

Abstract

Let k be a field, let G be a reductive group, and let V be a linear representation of G. Let \(V/\!/G =\mathop{ \mathrm{Spec}}\nolimits ({\mathrm{Sym}}^{{\ast}}(V ^{{\ast}}))^{G}\) denote the geometric quotient and let \(\pi: V \rightarrow V/\!/G\) denote the quotient map. Arithmetic invariant theory studies the map π on the level of k-rational points. In this article, which is a continuation of the results of our earlier paper “Arithmetic invariant theory”, we provide necessary and sufficient conditions for a rational element of \(V/\!\!/G\) to lie in the image of π, assuming that generic stabilizers are abelian. We illustrate the various scenarios that can occur with some recent examples of arithmetic interest.

To David Vogan on his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bhargava, Higher composition laws I: A new view on Gauss composition, and quadratic generalizations, Ann. of Math. 159 (2004), no. 1, 217–250.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Bhargava, Higher composition laws II: On cubic analogues of Gauss composition, Ann. of Math. 159 (2004), no. 2, 865–886.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bhargava, Most hyperelliptic curves over \(\mathbb{Q}\) have no rational points, (2013)http://arxiv.org/abs/1308.0395.

  4. M. Bhargava and B. Gross, Arithmetic invariant theory in Symmetry: Representation Theory and Its Applications; In Honor of Nolan R. Wallach, Progress in Mathematics Vol. 257 (2014), 33–54.

    Article  Google Scholar 

  5. M. Bhargava and B. Gross, The average size of the 2-Selmer group of the Jacobians of hyperelliptic curves with a rational Weierstrass point in Automorphic Representations and L-functions, TIFR Studies in Math 22 (2013), 23–91.

    MATH  Google Scholar 

  6. M. Bhargava, B. Gross, and X. Wang, A positive proportion of locally soluble hyperelliptic curves over \(\mathbb{Q}\) have no point over any old degree extension, to appear in JAMS.

    Google Scholar 

  7. M. Bhargava and W. Ho, Coregular spaces and genus one curves (2013), http://arxiv.org/abs/1306.4424.

  8. B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms, Proc. London Math. Soc. s3-24 (1972), 385–394.

    Google Scholar 

  9. N. Bruin, B. Poonen, M. Stoll, Generalized explicit descent and its application to curves of genus 3 (2012), http://arxiv.org/abs/1205.4456.

  10. J. Giraud, Cohomologie non abélienne, Die Grundlehren der math. Wissenschaften, Band 179, Springer-Verlag 1971.

    Google Scholar 

  11. B. Gross, On Bhargava’s representations and Vinberg’s invariant theory, in: Frontiers of Mathematical Sciences, International Press (2011), 317–321.

    Google Scholar 

  12. W-T. Gan, B. Gross, and D. Prasad, Sur les conjectures de Gross et Prasad, Astérisque 346, 2012.

    Google Scholar 

  13. A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, AMS Colloquium Publications 44, 1998.

    Google Scholar 

  14. H. Jacquet and S. Rallis, On the Gross-Prasad conjecture for unitary groups, Clay Math. Proc. 13, 205–264, Amer. Math. Soc., Providence, RI, 2011.

    Google Scholar 

  15. G. Laumon and L. Moret-Bailly, Champs algébriques, Springer-Verlag, 2000.

    Google Scholar 

  16. J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer Ergebnisse 73, 1970.

    Google Scholar 

  17. J. Nakagawa, Binary forms and orders of algebraic number fields, Invent. Math. 97 (1989), 219–235.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Panyushev, On invariant theory of \(\theta\) -groups, J. Algebra 283 (2005), 655–670.

    Google Scholar 

  19. B. Poonen and E. F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188.

    MathSciNet  MATH  Google Scholar 

  20. V. L. Popov and E. B. Vinberg, Invariant Theory, in Algebraic Geometry IV, Encylopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, 1994.

    Google Scholar 

  21. S. Rallis and G. Shiffman, Multiplicity one conjectures (2007), http://arxiv.org/abs/0705.2168.

  22. E. F. Schaefer, 2-descent on the Jacobians of hyperelliptic curves, J. Number Theory 51 (1995), 219–232.

    Article  MathSciNet  MATH  Google Scholar 

  23. J-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, 2002.

    MATH  Google Scholar 

  24. J-P. Serre, Local Fields, Springer Graduate Texts in Mathematics, Vol. 67, 1995.

    Google Scholar 

  25. A. Shankar and X. Wang, Average size of the 2-Selmer group for monic even hyperelliptic curves (2013), http://arxiv.org/abs/1307.3531.

  26. J. Thorne, The arithmetic of simple singularities, Ph.D. Thesis, Harvard University, 2012.

    Google Scholar 

  27. X. Wang, Maximal linear spaces contained in the the base loci of pencils of quadrics (2013), http://arxiv.org/abs/1302.2385.

  28. M. M. Wood, Rings and ideals parametrized by binary n-ic forms, J. London Math. Soc. (2) 83 (2011), 208–231.

    Google Scholar 

  29. M. M. Wood, Parametrization of ideal classes in rings associated to binary forms, J. reine angew. Math. (Crelle), Vol. 2014, Issue 689, 169–199, DOI: 10.1515/crelle-2012-0058.

    Google Scholar 

  30. W. Zhang, Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups, Ann. of Math. Vol. 180 (2014), Issue 3, 971–1049.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhargava, M., Gross, B.H., Wang, X. (2015). Arithmetic invariant theory II: Pure inner forms and obstructions to the existence of orbits. In: Nevins, M., Trapa, P. (eds) Representations of Reductive Groups. Progress in Mathematics, vol 312. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-23443-4_5

Download citation

Publish with us

Policies and ethics