Skip to main content

Parameters for twisted representations

  • Chapter
  • First Online:
Representations of Reductive Groups

Part of the book series: Progress in Mathematics ((PM,volume 312))

Abstract

The main result of [4] is the description of an algorithm to compute the signature of the Hermitian form on an irreducible representation of a real reductive Lie group G, and therefore determine if it is unitary. This paper concerns an important ingredient of the algorithm. If the inner class of G is defined by an outer automorphism δ, so that G does not have discrete series representations, it is necessary to compute a new class of Kazhdan–Lusztig–Vogan polynomials for G. These were defined and studied by Lusztig and Vogan in [10]. In order to carry out the computation, we introduce new class of twisted parameters, and study the Hecke algebra action in the resulting basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Adams, D. M. Barbasch and D. A. Vogan, Jr., The Langlands Classification and Irreducible Characters for Real Reductive Groups, Birkhäuser, Boston–Basel–Berlin, 1992.

    Book  MATH  Google Scholar 

  2. J. D. Adams and D. A. Vogan, Jr., The Contragredient, to appear in Amer. J. Math.

    Google Scholar 

  3. J. Adams and F. du Cloux, Algorithms for representation theory of real reductive groups, J. Inst. Math. Jussieu 8 (2009), no. 2, 209–259.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Adams, M. van Leeuwen, P. Trapa and D. A. Vogan, Jr., Unitary representations of real reductive groups (2012), arXiv:1212.2192 [math.RT].

    Google Scholar 

  5. J. D. Adams and D. A. Vogan, Jr., L-groups, projective representations, and the Langlands classification, Amer. J. Math. 114 (1992), no. 1, 45–138.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton University Press, Princeton, New Jersey, 1986.

    Book  MATH  Google Scholar 

  8. A. W. Knapp and D. A. Vogan, Jr., Cohomological Induction and Unitary Representations, Princeton University Press, Princeton, New Jersey, 1995.

    Book  MATH  Google Scholar 

  9. R. P. Langlands, On the classification of representations of real algebraic groups, in Representation Theory and Harmonic Analysis on Semisimple Lie Groups, AMS Mathematical Surveys and Monographs, Vol. 31, 1989, pp. 101–170.

    Article  MATH  Google Scholar 

  10. G. Lusztig and D. A. Vogan, Jr., Quasisplit Hecke algebras and symmetric spaces, Duke Math. J. 163 (2014), no. 5, 983–1034.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. A. Springer, Reductive groups, in Automorphic forms, representations and L-functions, (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore. 1977), Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–27.

    Google Scholar 

  12. R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, 1968.

    Google Scholar 

  13. J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. A. Vogan, Jr., Representations of Real Reductive Lie Groups, Birkhäuser, Boston-Basel-Stuttgart, 1981.

    MATH  Google Scholar 

  15. D. A. Vogan, Jr., Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality, Duke Math. J. 49 (1982), no. 4, 943–1073.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. A. Vogan, Jr., Unitary Representations of Reductive Lie Groups, Annals of Mathematics Studies, Princeton University Press, Princeton, New Jersey, 1987.

    MATH  Google Scholar 

  17. Atlas of Lie Groups and Representations software, 2015. http://www.liegroups.org

Download references

Acknowledgements

Supported in part by NSF Grants #DMS-0967566 (first author) and #DMS-0968275 (both authors).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Adams .

Editor information

Editors and Affiliations

Additional information

The first author dedicates this to the second on the occasion of his 60 th birthday

Appendix

Appendix

We collect a few technical results about the Tits group [13], which will be needed for our study of parameters for representations in Section 3. We continue with the notation of (11). For each simple root α, the pinning defines a canonical homomorphism

$$\displaystyle{ \phi _{\alpha }: (\mathrm{SL}(2),\mbox{ diag}) \rightarrow (G,H)\qquad d\phi _{\alpha }\left (\begin{array}{*{10}c} 0&1\\ 0 &0 \end{array} \right ) = X_{\alpha }. }$$
(53a)

Similarly,

$$\displaystyle{ \phi _{\alpha ^{\vee }}: (\mathrm{SL}(2),\mbox{ diag}) \rightarrow (^{\vee }G,^{\vee }H)\qquad d\phi _{\alpha ^{\vee }}\left (\begin{array}{*{10}c} 0&1\\ 0 &0 \end{array} \right ) = X_{\alpha ^{\vee }}. }$$
(53b)

It is sometimes convenient to define also

$$\displaystyle{ H_{\alpha } = d\phi _{\alpha }\left (\begin{array}{*{10}c} 1& 0\\ 0 &-1 \end{array} \right ),\qquad X_{-\alpha } = d\phi _{\alpha }\left (\begin{array}{*{10}c} 0&0\\ 1 &0 \end{array} \right ); }$$
(53c)

the first element (because α(H α ) = 2) “is” the coroot α . The second is a preferred root vector for −α, characterized by the last of the three relations

$$\displaystyle{ \left [H_{\alpha },X_{\alpha }\right ] = 2X_{\alpha },\quad \left [H_{\alpha },X_{-\alpha }\right ] = -2X_{-\alpha },\quad \left [X_{\alpha },X_{-\alpha }\right ] = H_{\alpha }. }$$
(53d)

In this way we get a distinguished representative

$$\displaystyle{ \begin{array}{ll} \sigma _{\alpha } & = _{\mbox{ def}}\phi _{\alpha }\left (\begin{array}{*{10}c} 0 &1\\ -1 &0 \end{array} \right ) =\exp ( \frac{\pi }{2}(X_{\alpha } - X_{-\alpha })) \\ \qquad \sigma _{\alpha }^{2} & = m_{\alpha } = _{\mbox{ def}}\alpha ^{\vee }(-1)\end{array} }$$
(53e)

for the simple reflection s α . These representatives satisfy the braid relations (see [13]) and therefore define distinguished representatives

$$\displaystyle{ \sigma _{w} = _{\mbox{ def}}\sigma _{\alpha _{1}}\sigma _{\alpha _{2}}\cdots \sigma _{\alpha _{r}}\qquad (w = s_{\alpha _{1}}s_{\alpha _{2}}\cdots s_{\alpha _{r}}\ \mbox{ reduced}) }$$
(53f)

for each Weyl group element w. (That \(\sigma _{w}\) is independent of the choice of reduced decomposition is a consequence of the fact that the \(\sigma _{\alpha }\) satisfy the braid relations.) If γ is any distinguished (that is, pinning-preserving) automorphism of (G, B, H), then

$$\displaystyle{ \gamma (\sigma _{w}) =\sigma _{\gamma (w)}. }$$
(53g)

The braid relations imply, for any w ∈ W and simple root α

$$\displaystyle{ \sigma _{w}\sigma _{\alpha } = \left \{\begin{array}{@{}l@{\quad }l@{}} \sigma _{ws_{\alpha }} \quad &\mbox{ length}(ws_{\alpha }) = \mbox{ length}(w) + 1 \\ \sigma _{ws_{\alpha }}m_{\alpha }\quad &\mbox{ length}(ws_{\alpha }) = \mbox{ length}(w) - 1 \end{array} \right. }$$
(53h)

and a similar result for \(\sigma _{\alpha }\sigma _{w}\) (with m α on the left).

In exactly the same way, we get a distinguished representative in G:

$$\displaystyle{ ^{\vee }\sigma _{ w} = _{\mbox{ def}}\sigma _{\alpha _{1}^{\vee }}\sigma _{\alpha _{2}^{\vee }}\cdots \sigma _{\alpha _{r}^{\vee }}\qquad (w = s_{\alpha _{1}}s_{\alpha _{2}}\cdots s_{\alpha _{r}}\ \mbox{ reduced}). }$$
(53i)

The main fact we need about these representatives is

Proposition 12.1.

In the setting of (53) ,

$$\displaystyle{\begin{array}{ll} \sigma _{w}\sigma _{w^{-1}} & = (w\rho ^{\vee }-\rho ^{\vee })(-1) \\ & = e((\rho ^{\vee }- w\rho ^{\vee })/2)\\ &=\prod \limits _{ \begin{array}{c}\beta \in R^{+}(G,H) \\ w^{-1}\beta \notin R^{+}(G,H)\end{array}}m_{\beta }. \end{array} }$$

The proof is an easy induction on (w). See [2, Lemma 5.4].

Proposition 12.2.

In the setting (11) , suppose w ∈ W, α,β ∈Π are simple roots, and wα = β. Write X α and X β for the simple root vectors given by the pinning, and \(\sigma _{w} \in N(H)\) for the Tits representative of w defined in (53f) . Then

$$\displaystyle{\sigma _{w}\sigma _{\alpha }\sigma _{w}^{-1} =\sigma _{\beta }}$$

and

$$\displaystyle\begin{array}{rcl} \mathop{\mathrm{Ad}}\nolimits (\sigma _{w})(X_{\alpha }) = X_{\beta },\quad \mathop{\mathrm{Ad}}\nolimits (\sigma _{w})(X_{-\alpha }) = X_{-\beta }.& &{}\end{array}$$
(54)

Proof.

Since β = w α, \(s_{\beta }w = ws_{\alpha }\). If \(\mbox{ length}(ws_{\alpha }) = \mbox{ length}(s_{\beta }w) = \mbox{ length}(w) + 1\), then the first case of (53h) implies

$$\displaystyle{\sigma _{w}\sigma _{\alpha } =\sigma _{ws_{\alpha }} =\sigma _{s_{\beta }w} =\sigma _{\beta }\sigma _{w}.}$$

If the lengths are decreasing, we see

$$\displaystyle{\begin{array}{ll} \sigma _{w}\sigma _{\alpha }& =\sigma _{ws_{\alpha }}m_{\alpha }\\ & =\sigma _{ s_{\beta }w}m_{\alpha }\\ & = m_{\beta }\sigma _{\beta }\sigma _{ w}m_{\alpha }\\ & = m_{\beta }m_{ s_{\beta }w\alpha }\sigma _{\beta }\sigma _{w} \\ & =\sigma _{\beta }\sigma _{w}\quad \mbox{ (since $s_{\beta }w\alpha = -\beta $)}. \end{array} }$$

For the second statement we observe that \(\mathop{\mathrm{Ad}}\nolimits (\sigma _{w})(X_{\alpha })\) is some multiple of X β . The Tits group preserves the \(\mathbb{Z}\)-form of \(\mathfrak{g}\) generated by the various X ±α , so this scalar is ± 1; we need to show it is 1. We compute

$$\displaystyle{\begin{array}{ll} \sigma _{w}\sigma _{\alpha }\sigma _{w}^{-1} & =\sigma _{w}(\exp \frac{\pi }{2}(X_{\alpha } - X_{-\alpha }))\sigma _{w}^{-1} \\ & =\exp ( \frac{\pi }{2}\mathop{ \mathrm{Ad}}\nolimits (\sigma _{w})(X_{\alpha } - X_{-\alpha })). \end{array} }$$

On the other hand, by what we just proved this equals

$$\displaystyle{\sigma _{\beta } =\exp ( \frac{\pi } {2}(X_{\beta } - X_{-\beta })).}$$

Setting these equal gives the two equalities in the second statement. □ 

Corollary 12.3.

In the setting (11), suppose w ∈ W, α,β ∈Π are simple roots, and wα = −β. Write X α and X β for the simple root vectors given by the pinning, and \(\sigma _{w} \in N(H)\) for the Tits representative of w defined in (53f) . Then

$$\displaystyle{\sigma _{w}\sigma _{\alpha }\sigma _{w}^{-1} =\sigma _{\beta }}$$

and

$$\displaystyle{\mathop{\mathrm{Ad}}\nolimits (\sigma _{w})(X_{\alpha }) = -X_{-\beta },\qquad \mathop{\mathrm{Ad}}\nolimits (\sigma _{w})(X_{-\alpha }) = -X_{\beta }.}$$

Proof.

Let w′ = ws α . The first assertion follows from the previous lemma applied to \(\sigma _{w'}\), using the fact that \(\sigma _{w'} =\sigma _{w}\sigma _{\alpha }\) (since w′ = ws α is a reduced expression). As in the proof of the previous proposition we conclude that

$$\displaystyle{\exp ( \frac{\pi } {2}(\mathop{\mathrm{Ad}}\nolimits (\sigma _{w})(X_{\alpha } - X_{-\alpha })) =\exp ( \frac{\pi } {2}(X_{\beta } - X_{-\beta })),}$$

and in this case this implies \(\mathop{\mathrm{Ad}}\nolimits (\sigma _{w})(X_{\alpha }) = -X_{-\beta }\) and \(\mathop{\mathrm{Ad}}\nolimits (\sigma _{w})(X_{-\alpha }) = -X_{\beta }\). □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adams, J., Vogan, D.A. (2015). Parameters for twisted representations. In: Nevins, M., Trapa, P. (eds) Representations of Reductive Groups. Progress in Mathematics, vol 312. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-23443-4_3

Download citation

Publish with us

Policies and ethics