Skip to main content

On exotic and perverse-coherent sheaves

  • Chapter
  • First Online:
Representations of Reductive Groups

Part of the book series: Progress in Mathematics ((PM,volume 312))

Abstract

Exotic sheaves are certain complexes of coherent sheaves on the cotangent bundle of the flag variety of a reductive group. They are closely related to perverse-coherent sheaves on the nilpotent cone. This expository article includes the definitions of these two categories, applications, and some structure theory, as well as detailed calculations for SL2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Achar, Equivariant coherent sheaves on the nilpotent cone for complex reductive Lie groups, Ph.D. thesis, Massachusetts Institute of Technology, 2001.

    Google Scholar 

  2. P. Achar, On the equivariant K-theory of the nilpotent cone for the general linear group, Represent. Theory 8 (2004), 180–211.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Achar, Perverse coherent sheaves on the nilpotent cone in good characteristic, Recent developments in Lie algebras, groups and representation theory, Proc. Sympos. Pure Math., vol. 86, Amer. Math. Soc., 2012, pp. 1–23.

    Google Scholar 

  4. P. Achar and S. Riche, Koszul duality and semisimplicity of Frobenius, Ann. Inst. Fourier 63 (2013), 1511–1612.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Achar and S. Riche, Modular perverse sheaves on flag varieties I: tilting and parity sheaves, with a joint appendix with G. Williamson, Ann. Sci. Éc. Norm. Supér., to appear.

    Google Scholar 

  6. P. Achar and S. Riche, Modular perverse sheaves on flag varieties II: Koszul duality and formality, Duke Math. J., to appear.

    Google Scholar 

  7. P. Achar and L. Rider, Parity sheaves on the affine Grassmannian and the Mirković–Vilonen conjecture, Acta Math. J., to appear.

    Google Scholar 

  8. P. Achar and L. Rider, The affine Grassmannian and the Springer resolution in positive characteristic, with a joint appendix with S. Riche, arXiv:1408.7050, 2014.

    Google Scholar 

  9. H. H. Andersen and J. C. Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487–525.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Arinkin and R. Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J. 10 (2010), 3–29.

    MathSciNet  MATH  Google Scholar 

  11. S. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, Israel J. Math. 170 (2009), 135–183.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595–678.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Beĭlinson, On the derived category of perverse sheaves, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., Vol. 1289, Springer-Verlag, Berlin, 1987, pp. 27–41.

    Google Scholar 

  14. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), Astérisque, Vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.

    Google Scholar 

  15. A. Beĭlinson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Moscow Math. J. 4 (2004), 547–557.

    MathSciNet  MATH  Google Scholar 

  16. A. Beĭlinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Bezrukavnikov, Perverse coherent sheaves (after Deligne), arXiv:math.AG/0005152, 2000.

    Google Scholar 

  18. R. Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Bezrukavnikov, Cohomology of tilting modules over quantum groups and t-structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), 327–357.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Bezrukavnikov, Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math. 170 (2009), 185–206.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Bezrukavnikov and I. Mirković, Representations of semi-simple Lie algebras in prime characteristic and noncommutative Springer resolution, Ann. of Math. (2) 178 (2013), 835–919.

    Google Scholar 

  22. R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, with an appendix by Bezrukavnikov and Simon Riche, Ann. of Math. (2) 167 (2008), 945–991.

    Google Scholar 

  23. R. Bezrukavnikov, I. Mirković, and D. Rumynin, Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, Nagoya Math. J. 184 (2006), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Bezrukavnikov and S. Riche, Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. École Norm. Sup. (4) 45 (2012), 535–599.

    Google Scholar 

  25. R. Bezrukavnikov and Z. Yun, On Koszul duality for Kac–Moody groups, Represent. Theory 17 (2013), 1–98.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Broer, The sum of generalized exponents and Chevalley’s restriction theorem for modules of covariants, Indag. Math. (N.S.) 6 (1995), 385–396.

    Google Scholar 

  27. R. K. Brylinski, Limits of weight spaces, Lusztig’s q-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc. 2 (1989), 517–533.

    MathSciNet  MATH  Google Scholar 

  28. C. Dodd, Equivariant coherent sheaves, Soergel bimodules, and categorification of affine Hecke algebras, arXiv:1108.4028, 2011.

    Google Scholar 

  29. S. Kumar, N. Lauritzen, and J. F. Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (1999), 603–621.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Juteau, Modular representations of reductive groups and geometry of affine Grassmannians, arXiv:0804.2041, 2008.

    Google Scholar 

  31. D. Juteau, C. Mautner, and G. Williamson, Parity sheaves and tilting modules, Ann. Sci. Éc. Norm. Supér., to appear.

    Google Scholar 

  32. G. Lusztig, Singularities, character formulas, and a q-analogue of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, no. 101–102, Soc. Math. France, Paris, 1983, pp. 208–229.

    Google Scholar 

  33. G. Lusztig, Cells in affine Weyl groups. IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 297–328.

    MathSciNet  MATH  Google Scholar 

  34. G. Lusztig, Bases in equivariant K-theory. II, Represent. Theory 3 (1999), 281–353.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Mautner and S. Riche, On the exotic t-structure in positive characteristic, arXiv:1412.6818, 2014.

    Google Scholar 

  36. C. Mautner and S. Riche, Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković–Vilonen conjecture, arXiv:1501.07369, 2015.

    Google Scholar 

  37. M. Minn-Thu-Aye, Multiplicity formulas for perverse coherent sheaves on the nilpotent cone, Ph.D. thesis, Louisiana State University, 2013.

    Google Scholar 

  38. I. Mirković and K. Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), 13–24.

    Article  MathSciNet  MATH  Google Scholar 

  39. I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95–143.

    Google Scholar 

  40. S. Riche, W. Soergel, and G. Williamson, Modular Koszul duality, Compos. Math. 150 (2014), 273–332.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. A. Vogan, Jr., The method of coadjoint orbits for real reductive groups, Representation theory of Lie groups (Park City, UT, 1998), IAS/Park City Math. Ser., Vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Chris Dodd, Carl Mautner, and Simon Riche for numerous helpful comments and suggestions on an earlier draft of this paper. This work was supported by NSF grant DMS-1001594 and NSA grant H98230-14-1-0117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod N. Achar .

Editor information

Editors and Affiliations

Additional information

Dedicated to David Vogan on his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Achar, P.N. (2015). On exotic and perverse-coherent sheaves. In: Nevins, M., Trapa, P. (eds) Representations of Reductive Groups. Progress in Mathematics, vol 312. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-23443-4_2

Download citation

Publish with us

Policies and ethics