Abstract
Exotic sheaves are certain complexes of coherent sheaves on the cotangent bundle of the flag variety of a reductive group. They are closely related to perverse-coherent sheaves on the nilpotent cone. This expository article includes the definitions of these two categories, applications, and some structure theory, as well as detailed calculations for SL2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Achar, Equivariant coherent sheaves on the nilpotent cone for complex reductive Lie groups, Ph.D. thesis, Massachusetts Institute of Technology, 2001.
P. Achar, On the equivariant K-theory of the nilpotent cone for the general linear group, Represent. Theory 8 (2004), 180–211.
P. Achar, Perverse coherent sheaves on the nilpotent cone in good characteristic, Recent developments in Lie algebras, groups and representation theory, Proc. Sympos. Pure Math., vol. 86, Amer. Math. Soc., 2012, pp. 1–23.
P. Achar and S. Riche, Koszul duality and semisimplicity of Frobenius, Ann. Inst. Fourier 63 (2013), 1511–1612.
P. Achar and S. Riche, Modular perverse sheaves on flag varieties I: tilting and parity sheaves, with a joint appendix with G. Williamson, Ann. Sci. Éc. Norm. Supér., to appear.
P. Achar and S. Riche, Modular perverse sheaves on flag varieties II: Koszul duality and formality, Duke Math. J., to appear.
P. Achar and L. Rider, Parity sheaves on the affine Grassmannian and the Mirković–Vilonen conjecture, Acta Math. J., to appear.
P. Achar and L. Rider, The affine Grassmannian and the Springer resolution in positive characteristic, with a joint appendix with S. Riche, arXiv:1408.7050, 2014.
H. H. Andersen and J. C. Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487–525.
D. Arinkin and R. Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J. 10 (2010), 3–29.
S. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, Israel J. Math. 170 (2009), 135–183.
S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595–678.
A. Beĭlinson, On the derived category of perverse sheaves, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., Vol. 1289, Springer-Verlag, Berlin, 1987, pp. 27–41.
A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), Astérisque, Vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
A. Beĭlinson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Moscow Math. J. 4 (2004), 547–557.
A. Beĭlinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527.
R. Bezrukavnikov, Perverse coherent sheaves (after Deligne), arXiv:math.AG/0005152, 2000.
R. Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1–18.
R. Bezrukavnikov, Cohomology of tilting modules over quantum groups and t-structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), 327–357.
R. Bezrukavnikov, Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math. 170 (2009), 185–206.
R. Bezrukavnikov and I. Mirković, Representations of semi-simple Lie algebras in prime characteristic and noncommutative Springer resolution, Ann. of Math. (2) 178 (2013), 835–919.
R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, with an appendix by Bezrukavnikov and Simon Riche, Ann. of Math. (2) 167 (2008), 945–991.
R. Bezrukavnikov, I. Mirković, and D. Rumynin, Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, Nagoya Math. J. 184 (2006), 1–55.
R. Bezrukavnikov and S. Riche, Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. École Norm. Sup. (4) 45 (2012), 535–599.
R. Bezrukavnikov and Z. Yun, On Koszul duality for Kac–Moody groups, Represent. Theory 17 (2013), 1–98.
A. Broer, The sum of generalized exponents and Chevalley’s restriction theorem for modules of covariants, Indag. Math. (N.S.) 6 (1995), 385–396.
R. K. Brylinski, Limits of weight spaces, Lusztig’s q-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc. 2 (1989), 517–533.
C. Dodd, Equivariant coherent sheaves, Soergel bimodules, and categorification of affine Hecke algebras, arXiv:1108.4028, 2011.
S. Kumar, N. Lauritzen, and J. F. Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (1999), 603–621.
D. Juteau, Modular representations of reductive groups and geometry of affine Grassmannians, arXiv:0804.2041, 2008.
D. Juteau, C. Mautner, and G. Williamson, Parity sheaves and tilting modules, Ann. Sci. Éc. Norm. Supér., to appear.
G. Lusztig, Singularities, character formulas, and a q-analogue of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, no. 101–102, Soc. Math. France, Paris, 1983, pp. 208–229.
G. Lusztig, Cells in affine Weyl groups. IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 297–328.
G. Lusztig, Bases in equivariant K-theory. II, Represent. Theory 3 (1999), 281–353.
C. Mautner and S. Riche, On the exotic t-structure in positive characteristic, arXiv:1412.6818, 2014.
C. Mautner and S. Riche, Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković–Vilonen conjecture, arXiv:1501.07369, 2015.
M. Minn-Thu-Aye, Multiplicity formulas for perverse coherent sheaves on the nilpotent cone, Ph.D. thesis, Louisiana State University, 2013.
I. Mirković and K. Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), 13–24.
I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95–143.
S. Riche, W. Soergel, and G. Williamson, Modular Koszul duality, Compos. Math. 150 (2014), 273–332.
D. A. Vogan, Jr., The method of coadjoint orbits for real reductive groups, Representation theory of Lie groups (Park City, UT, 1998), IAS/Park City Math. Ser., Vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238.
Acknowledgements
I am grateful to Chris Dodd, Carl Mautner, and Simon Riche for numerous helpful comments and suggestions on an earlier draft of this paper. This work was supported by NSF grant DMS-1001594 and NSA grant H98230-14-1-0117.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Additional information
Dedicated to David Vogan on his 60th birthday
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Achar, P.N. (2015). On exotic and perverse-coherent sheaves. In: Nevins, M., Trapa, P. (eds) Representations of Reductive Groups. Progress in Mathematics, vol 312. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-23443-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-23443-4_2
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-23442-7
Online ISBN: 978-3-319-23443-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)