International Workshop on Multiple Access Communications

MACOM 2015: Multiple Access Communications pp 57-69 | Cite as

Device-to-Device Data Storage with Regenerating Codes

  • Joonas Pääkkönen
  • Camilla Hollanti
  • Olav Tirkkonen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9305)

Abstract

Caching data files directly on mobile user devices combined with device-to-device (D2D) communications has recently been suggested to improve the capacity of wireless networks. We investigate the performance of regenerating codes in terms of the total energy consumption of a cellular network. We show that regenerating codes can offer large performance gains. It turns out that using redundancy against storage node failures is only beneficial if the popularity of the data is between certain thresholds. As our major contribution, we investigate under which circumstances regenerating codes with multiple redundant data fragments outdo uncoded caching.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013–2018, (2014). White Paper. http://goo.gl/l77HAJ
  2. 2.
    Harrison, P., Patel, N.M.: Performance Modelling of Communication Networks and Computer Architectures, p. 173. Addison-Wesley (1992)Google Scholar
  3. 3.
    Han, T., Ansari, N.: Offloading Mobile Traffic via Green Content Broker. IEEE Internet of Things Journal 1(2), 161–170 (2014)CrossRefGoogle Scholar
  4. 4.
    Li, Y., Wang, Z., Jin, D., Chen, S.: Optimal Mobile Content Downloading in Device-to-Device Communication Underlaying Cellular Networks. IEEE Transactions on Wireless Communications 13(7), 3596–3608 (2014)CrossRefGoogle Scholar
  5. 5.
    Golrezaei, N., Mansourifard, P., Molisch, A.F., Dimakis, A.G.: Base Station Assisted Device-to-Device Communications for High-Throughput Wireless Video Networks. IEEE Transactions on Wireless Communications 13(7), 3665–3676 (2014)CrossRefGoogle Scholar
  6. 6.
    Hachem, J., Karamchandani, N., Diggavi, S.: Coded Caching for Heterogeneous Wireless Networks with Multi-level Access, arXiv:1404.6560 (2014)
  7. 7.
    Li, Y., et al.: Coding or Not: Optimal Mobile Data Offloading in Opportunistic Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems 15(1), 318–333 (2014)CrossRefGoogle Scholar
  8. 8.
    Monteiro, J.G.: Modeling and Analysis of Reliable Peer-to-Peer Storage Systems, Ph.D. dissertation, CNRS, Uni. Nice-Sophia Antipolis (2010)Google Scholar
  9. 9.
    Golrezaei, N., Shanmugam, K., Dimakis, A.G., Molisch, A.F., Caire, G.: FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers. IEEE Transactions on Information Theory 59(12), 8402–8413 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ji, M., Caire, G., Molisch, A.F.: Fundamental limits of distributed caching in d2d wireless networks. In: Proc. IEEE Information Theory Workshop (ITW), pp. 1–5 (2013)Google Scholar
  11. 11.
    Baştuğ, E., Bennis, M., Debbah, M.: Living on the Edge: The Role of Proactive Caching in 5G Wireless Networks. IEEE Communications Magazine 52(8), 82–89 (2014)CrossRefGoogle Scholar
  12. 12.
    Blasiak, A., Kleinberg, R., Lubetzky, E.: Broadcasting With Side Information: Bounding and Approximating the Broadcast Rate. IEEE Transactions on Information Theory 59(9), 5811–5823 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Maddah-Ali, M.A., Niesen, U.: Fundamental Limits of Caching. IEEE Transactions on Information Theory 60(5), 2856–2867 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Datta, A., Oggier, F.: An Overview of Codes Tailor-made for Networked Distributed Data Storage. Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory News 44(1), 89–105 (2013)MathSciNetGoogle Scholar
  15. 15.
    Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.O., Ramchandran, K.: Network Coding for Distributed Storage Systems. IEEE Transactions on Information Theory 56(9), 4539–4551 (2010)CrossRefGoogle Scholar
  16. 16.
    Rashmi, K.V., Shah, N.B., Kumar, P.V.: Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction. IEEE Transactions on Information Theory 57(8), 5227–5239 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pääkkönen, J., Dharmawansa, P., Hollanti, C., Tirkkonen, O.: Distributed storage for proximity based services. In: Proc. IEEE Swedish Communication Technologies Workshop, pp. 30–35 (2012)Google Scholar
  18. 18.
    Pääkkönen, J., Hollanti, C., Tirkkonen, O.: Device-to-device data storage for mobile cellular systems. In: Proc. IEEE Globecom Workshops, pp. 671–676 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Joonas Pääkkönen
    • 1
  • Camilla Hollanti
    • 1
  • Olav Tirkkonen
    • 2
  1. 1.Department of Mathematics and Systems Analysis, School of ScienceAalto UniversityEspooFinland
  2. 2.Department of Communications and Networking, School of Electrical EngineeringAalto UniversityEspooFinland

Personalised recommendations