Memetic Neuro-Fuzzy System with Big-Bang-Big-Crunch Optimisation

  • Krzysztof Siminski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 391)


The paper presents a memetic fuzzy inference system based on Big Bang Big Crunch (evolutionary optimisation) and gradient descent (local search) techniques. Tuning parameters of the fuzzy system with evolutionary optimisation failed to be successful, but application of both evolutionary and local optimisation achieved lower error rates than reference system (that uses only gradient descent optimisation). The results of experiments have been statistically verified.


Approximate inversion Imputation Incomplete data Neuro-fuzzy system 


  1. 1.
    Abbaszadeh, M., Saeedvand, S., Mayani, H.A.: Solving university scheduling problem with a memetic algorithm. Int. J. Artif. Intell. 1(2), 79–90 (2012)Google Scholar
  2. 2.
    Cordón, O., Herrera, F.: Identification of linguistic fuzzy models by means of genetic algorithms. In: Hellendoorn, H., Driankov, D. (eds.) Fuzzy model Identification, pp. 215–250. Springer, Berlin (1997)CrossRefGoogle Scholar
  3. 3.
    Cordón, O., Herrera, F.: A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples. Int. J. Approx. Reason. 17(4), 369–407 (1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    Czogala, E., Leski, J.: Fuzzy and neuro-fuzzy intelligent systems. Series in fuzziness and soft computing. Physica-Verlag, A Springer-Verlag Company, Heidelberg, New York (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Di Gesu, V., Lo Bosco, G., Millonzi, F., Valenti, C.: A memetic algorithm for binary image reconstruction. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) Combinatorial Image Analysis, LNCS, vol. 4958, pp. 384–395. Springer, Berlin Heidelberg (2008)Google Scholar
  6. 6.
    Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters. J. Cybern. 3(3), 32–57 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Erol, O.K., Eksin, I.: A new optimization method: Big Bang-Big Crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)CrossRefGoogle Scholar
  8. 8.
    Hoffmann, F., Nelles, O.: Genetic programming for model selection of TSK-fuzzy systems. Inf. Sci. 136(1), 7–28 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Krasnogor, N., Aragón, A., Pacheco, J.: Memetic algorithms. In: Alba, E., Marti, R. (eds.) Metaheuristic procedures for training neutral networks. Operations Research/Computer Science Interfaces Series, vol. 36, pp. 225–248. Springer, US (2006)Google Scholar
  10. 10.
    Leski, J., Czogala, E.: A neuro-fuzzy inference system optimized by deterministic annealing. In: Hampel, R., Wagenknecht, M., Chaker, N. (eds.) Fuzzy Control, Advances in Soft Computing, vol. 6, pp. 287–293. Physica-Verlag HD (2000)Google Scholar
  11. 11.
    Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)CrossRefGoogle Scholar
  12. 12.
    Nalepa, J., Blocho, M.: Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Comput. 1–19 (2015)Google Scholar
  13. 13.
    Nalepa, J., Kawulok, M.: A memetic algorithm to select training data for support vector machines. In: GECCO 2014. pp. 573–580. Vancouver, Canada (2014)Google Scholar
  14. 14.
    Nelles, O., Fink, A., Babuška, R., Setnes, M.: Comparison of two construction algorithms for Takagi-Sugeno fuzzy models. Int. J. Math. Comput. Sci. 10(4), 835–855 (2000)zbMATHGoogle Scholar
  15. 15.
    Reichenbach, H.: Wahrscheinlichkeitslogik. Erkenntnis 5, 37–43 (1935)CrossRefGoogle Scholar
  16. 16.
    Sikora, M., Krzykawski, D.: Application of data exploration methods in analysis of carbon dioxide emission in hard-coal mines dewater pump stations. Mechanizacja i Automatyzacja Gornictwa 413(6) (2005)Google Scholar
  17. 17.
    Sikora, M., Krzystanek, Z., Bojko, B., Śpiechowicz, K.: Application of a hybrid method of machine learning for description and on-line estimation of methane hazard in mine workings. J. Min. Sci. 47(4), 493–505 (2011)CrossRefGoogle Scholar
  18. 18.
    Siminski, K.: Patchwork neuro-fuzzy system with hierarchical domain partition. In: Kurzyński, M., Woźniak, M. (eds.) Computer recognition systems 3, advances in intelligent and soft computing, vol. 57, pp. 11–18. Springer-Verlag, Berlin, Heidelberg (2009)Google Scholar
  19. 19.
    Tsakonas, A.: Local and global optimization for Takagi-Sugeno fuzzy system by memetic genetic programming. Expert Syst. Appl. 40, 3282–3298 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations