eVolutus: A Configurable Platform Designed for Ecological and Evolutionary Experiments Tested on Foraminifera

  • Paweł Topa
  • Maciej Komosinski
  • Maciej Bassara
  • Jarosław Tyszka
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 391)

Abstract

In this paper we present a new software platform called eVolutus, which is designed for modelling the ecological and evolutionary processes of living organisms. As a model organism we choose foraminifera—single-celled eukaryotes that mainly occupy marine benthic and pelagic zones. These organisms have lived on Earth for at least 500 million years and have an extraordinary fossil record. This makes them an ideal objects for testing general evolutionary hypotheses. We use a multiagent-based modelling platform called AgE. Our platform is designed to provide a highly configurable environment for conducting in silico experiments.

Keywords

Ecology Evolution Multi-agent systems Foraminifera 

Notes

Acknowledgments

The research presented in the paper received partial support from Polish National Science Center (DEC-2013/09/B/ST10/01734).

References

  1. 1.
    Berryman, A.: The origins and evolution of predator-prey theory. Ecology 73(5), 1530–1535 (1992)CrossRefGoogle Scholar
  2. 2.
    Brasier, M.: Microfossils. George Allen and Unwin, Cambridge (1980)Google Scholar
  3. 3.
    Byrski, A., Kisiel-Dorohinicki, M.: Agent-based model and computing environment facilitating the development of distributed computational intelligence systems. In: Allen, G., et al. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 865–874. Springer, Berlin (2009)CrossRefGoogle Scholar
  4. 4.
    Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolution process in multi-agent world (MAW) to the prediction system. In: ICMAS 1996, pp. 26–32. Kyoto, Japan (1996)Google Scholar
  5. 5.
    Goldstein, S.: Foraminifera: a biological overview. In: Sen Gupta, B.K. (ed.) Modern Foraminifera, pp. 37–55. Springer, Netherlands (1999)Google Scholar
  6. 6.
    Hoban, S., Bertorelle, G., Gaggiotti, O.E.: Computer simulations: tools for population and evolutionary genetics. Nat. Rev. Genet. 13(2), 110–122 (2012)Google Scholar
  7. 7.
    Komosinski, M., Adamatzky, A. (eds.): Artificial Life Models in Software, 2nd edn. Springer, London (2009)Google Scholar
  8. 8.
    Komosinski, M., Ulatowski, S.: Framsticks: creating and understanding complexity of life. In: Komosinski, M., Adamatzky, A. (eds.) Artificial Life Models in Software, chap. 5, pp. 107–148. Springer, London (2009)Google Scholar
  9. 9.
    Komosinski, M., Mensfelt, A., Topa, P., Tyszka, J.: Application of a morphological similarity measure to the analysis of shell morphogenesis in Foraminifera. In: Man-Machine Interactions 4. AISC, Springer (in press)Google Scholar
  10. 10.
    Komosinski, M., Mensfelt, A., Topa, P., Tyszka, J., Ulatowski, S.: Foraminifera: genetics, morphology, simulation, evolution (2014). http://www.framsticks.com/foraminifera
  11. 11.
    Labaj, P., Topa, P., Tyszka, J., Alda, W.: 2D and 3D numerical models of the growth of foraminiferal shells. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds.) Computational Science–ICCS 2003. LNCS, vol. 2657, pp. 669–678. Springer, Berlin (2003)CrossRefGoogle Scholar
  12. 12.
    Lazarus, D., Hilbrecht, H., Spencer-Cervato, C., Therstein, H.: Sympatric speciation and phyletic change in Globorotalia truncatuloides. Paleobiology 21(1), 28–51 (1995)Google Scholar
  13. 13.
    Murray, J.: Ecology and Palaeoecology of Benthic Foraminifera. Longman Scientific and Technical, New York (1991)Google Scholar
  14. 14.
    Pawlowski, J., Holzmann, M., Tyszka, J.: New supraordinal classification of foraminifera: molecules meet morphology. Mar. Micropaleontol. 100, 1–10 (2013)CrossRefGoogle Scholar
  15. 15.
    Pearson, P., Shackleton, N., Hall, M.: Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera). J. Geol. Soc. 154(2), 295–302 (1997)CrossRefGoogle Scholar
  16. 16.
    Strotz, L.C., Allen, A.P.: Assessing the role of cladogenesis in macroevolution by integrating fossil and molecular evidence. Proc. Nat. Acad. Sci. 110(8), 2904–2909 (2013)CrossRefGoogle Scholar
  17. 17.
    Tyszka, J., Topa, P.: A new approach to modeling of foraminiferal shells. Paleobiology 31(3), 526–541 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paweł Topa
    • 1
    • 3
  • Maciej Komosinski
    • 2
  • Maciej Bassara
    • 1
  • Jarosław Tyszka
    • 3
  1. 1.Department of Computer ScienceAGH University of Science and TechnologyKrakowPoland
  2. 2.Institute of Computing SciencePoznan University of TechnologyPoznanPoland
  3. 3.Research Centre in Cracow, Polish Academy of SciencesInstitute of Geological SciencesWarszawaPoland

Personalised recommendations