IRradiance Glass: Technology Transfer from University to Industry

  • J. David MusgravesEmail author
  • Jennifer McKinley
  • Peter Wachtel
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 224)


An overview of IRradiance Glass, Inc. and our development process for advanced chalcogenide glasses for infrared optics are presented. The physical and optical properties of chalcogenide glasses are reviewed, and some topics in infrared sensing are introduced to the reader. The impact of gradient refractive index (GRIN) materials on the functionality of optical elements is discussed, and the IRradiance Glass GRIN materials are described, explaining the technical challenges faced in moving this technology from the laboratory to the manufacturing floor. The chapter ends with a discussion of the technology transfer process, whereby intellectual property developed in a university setting is licensed to commercial entities for development. Future directions in both GRIN optics and technology transfer processes are discussed.


Intellectual Property Technology Transfer Chalcogenide Glass Spherical Aberration License Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1. Accessed June 2014
  2. 2.
  3. 3.
  4. 4.
    B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)Google Scholar
  5. 5.
    Z. Yang, P. Lucas, Tellurium-based far-infrared transmitting glasses. J. Am. Ceram. Soc. 92, 2920–2923 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Danto, P. Houizot, C. Boussard-Pledel, X. Zhang, F. Smektala, J. Lucas, A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications. Adv. Funct. Mater. 16, 1847–1852 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Maurugeon, C. Boussard-Pledel, J. Troles, A.J. Faber, P. Lucas, X.H. Zhang, J. Lucas, B. Bureau, Telluride glass step index fiber for the far infrared. J. Lightwave Technol. 28, 3358–3363 (2010)Google Scholar
  8. 8.
    V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, K. Lewis, Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres. Infrared Phys. Technol. 45, 115–123 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Zakery, S. Elliott, Optical properties and applications of chalcogenide glasses: a review. J. Non Cryst. Solids 330, 1–12 (2003)CrossRefGoogle Scholar
  10. 10.
    G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, G. Chen, A photo-stable chalcogenide glass. Opt. Express 16, 10565–10571 (2008)CrossRefGoogle Scholar
  11. 11.
    W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, A. Miller, Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies. J. Appl. Phys. 98, 053503 (2005)CrossRefGoogle Scholar
  12. 12.
    E.J. McBrearty, P. Mason, D. Orchard, M. Harris, K. Lewis, Optical bonding of high refractive index semiconductors using index matched chalcogenide glass. SPIE Proc. 5250, 462–470 (2004)CrossRefGoogle Scholar
  13. 13.
    B. Bernacki, N.C. Anheier, K. Krishnaswami, B.D. Cannon, K.B. Binkley, Design and fabrication of efficient miniature retroreflectors for the mid- and long-range infrared. SPIE Proc. 6940, 69400X (2008)CrossRefGoogle Scholar
  14. 14.
    N. Carlie, A solution-based approach to the fabrication of novel chalcogenide glass materials and structures, Ph.D. Thesis, Clemson University (2010)Google Scholar
  15. 15.
    K. Sivakumaran, C.K.S. Nair, Rapid synthesis of chalcogenide glasses of Se-Te-Sb system by microwave irradiation. J. Phys. D-Appl. Phys. 38, 2476–2479 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Ramachandran, S.G. Bishop, Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses. Appl. Phys. Lett. 74, 13–15 (1999)CrossRefGoogle Scholar
  17. 17.
    T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, S.N. Yannopoulos, Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films. J. Appl. Phys. 103, 063511 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Waldmann, J.D. Musgraves, K. Richardson, C.B. Arnold, Structural properties of solution processed Ge23Sb7S70 glass materials. J. Mater. Chem. 22, 17848–17852 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J.D. Musgraves, K. Richardson, J. Hu, Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films. Optical Materials Express 2, 1723–1732 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu, 3-D integrated flexible glass photonics. Nat. Photon. (2014). doi: 10.1938/nphoton.2014.138 Google Scholar
  21. 21.
    L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, M. Haney, A fully-integrated flexible photonic platform for chip-to-chip optical interconnects. J. Lightwave Technol. 31, 4080–4086 (2013)CrossRefGoogle Scholar
  22. 22.
    B. Bureau, X.H. Zhang, F. Smektala, J.L. Adam, J. Troles, H.L. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. Le Coq, M.R. Riley, J.H. Simmons, Recent advances in chalcogenide glasses. J. Noncryst. Solids 345, 276–283 (2004)CrossRefGoogle Scholar
  23. 23.
    N.S. Kapany, R.J. Simms, Recent developments in infrared fiber optics. Infrared Phys. 5, 69 (1965)CrossRefGoogle Scholar
  24. 24.
    J.D. Shephard, W.N. MacPherson, R.R.J. Maier, J.D.C. Jones, D.P. Hand, M. Mohebbi, A.K. George, P.J. Roberts, J.C. Knight, Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Opt. Express 13, 7139–7144 (2005)CrossRefGoogle Scholar
  25. 25.
    T.D. Engeness, M. Ibanescu, S.G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, Y. Fink, Dispersion tailoring and compensation by modal interactions in OmniGuide fibers. Opt. Express 11, 1175–1196 (2003)CrossRefGoogle Scholar
  26. 26.
    J. Hu, C.R. Menyuk, L.B. Shaw, J.S. Sanghera, I.D. Aggarwal, Maximizing the bandwidth of supercontinuum generation in As(2)Se(3) chalcogenide fibers. Opt. Express 18, 6722–6739 (2010)CrossRefGoogle Scholar
  27. 27.
    Z. Wang, N. Chocat, Fiber-optic technologies in laser-based therapeutics: threads for a cure. Curr. Pharm. Biotechnol. 11, 384–397 (2010)CrossRefGoogle Scholar
  28. 28.
    T. Ueda, K. Yamada, T. Sugita, Measurement of grinding temperature of ceramics using infrared radiation pyrometer with optical fiber. J. Eng. Ind. Trans. ASME 114, 317–322 (1992)CrossRefGoogle Scholar
  29. 29.
    M. Saito, M. Takizawa, S. Sakuragi, F. Tanei, Infrared image guide with bundled as-s glass-fibers. Appl. Opt. 24, 2304–2308 (1985)CrossRefGoogle Scholar
  30. 30.
    J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, H. Stone, Coherent infrared fiber image bundle. Appl. Phys. Lett. 59, 2639–2641 (1991)CrossRefGoogle Scholar
  31. 31.
    M. Asobe, T. Ohara, I. Yokohama, T. Kaino, Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre. Electron. Lett. 32, 1396–1397 (1996)CrossRefGoogle Scholar
  32. 32.
    R.E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L.B. Shaw, I.D. Aggarwal, Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B-Opt. Phys. 21, 1146–1155 (2004)CrossRefGoogle Scholar
  33. 33.
    B. Kuswandi, Nuriman, J. Huskens, W. Verboom, Optical sensing systems for microfluidic devices: a review. Analytica Chimica Acta 601, 141–155 (2007)Google Scholar
  34. 34.
    P.V. Lambeck, Integrated optical sensors for the chemical domain. Meas. Sci. Technol. 17, R93–R116 (2006)CrossRefGoogle Scholar
  35. 35.
    S.-S. Kim, C. Young, B. Mizaikoff, Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem. 390, 231–237 (2008)CrossRefGoogle Scholar
  36. 36.
    R.M. Klein, Chalcogenide glasses as passive thin-film structures for integrated optics. J. Electron. Mater. 3, 79–99 (1974)CrossRefGoogle Scholar
  37. 37.
    Y. Bai, S. Slivken, S.R. Darvish, M. Razeghi, Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency RID C-6716-2011 RID B-7273-2009 RID B-7265-2009. Appl. Phys. Lett. 93, 021103 (2008)CrossRefGoogle Scholar
  38. 38.
    C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533–1601 (2001)CrossRefGoogle Scholar
  39. 39.
    C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors. Chem. Rev. 108, 400–422 (2008)CrossRefGoogle Scholar
  40. 40.
    M. Kim, C.L. Canedy, W.W. Bewley, C.S. Kim, J.R. Lindle, J. Abell, I. Vurgaftman, J.R. Meyer, Interband cascade laser emitting at lambda = 3.75 μm in continuous wave above room temperature RID A-9426-2009. Appl. Phys. Lett. 92, 191110 (2008)CrossRefGoogle Scholar
  41. 41.
    I. Vurgaftman, W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, C.D. Merritt, J. Abell, J.R. Lindle, J.R. Meyer, Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. Nature Communications 2, 585 (2011)CrossRefGoogle Scholar
  42. 42.
    A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59–210 (2003)CrossRefGoogle Scholar
  43. 43.
    J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009)CrossRefGoogle Scholar
  44. 44.
    D.T. Moore, Gradient-index optics: a review. Appl. Opt. 19, 1035–1038 (1980)CrossRefGoogle Scholar
  45. 45.
    R.K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966)Google Scholar
  46. 46.
    G.J. Tearney, S.A. Boppart, B.E. Bouma, M.E. Brezinski, N.J. Weissman, J.F. Southern, J.G. Fujimoto, Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt. Lett. 21, 543–545 (1996)CrossRefGoogle Scholar
  47. 47.
    E.B. Grann, M.G. Moharam, D.A. Pommet, Optimal-design for antireflective tapered 2-dimensional subwavelength grating structures. J. Opt. Soc. Am. A 12, 333–339 (1995)CrossRefGoogle Scholar
  48. 48.
    A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, A.G. Brolo, On-chip surface-based detection with nanohole arrays. Anal. Chem. 79, 4094–4100 (2007)CrossRefGoogle Scholar
  49. 49.
  50. 50.
  51. 51.
  52. 52.
    J. Allen, A long, hard journey: from bayh-dole to the federal technology transfer act. Tomorrow’s Technol. Transf. 1, 21–32 (2009)Google Scholar
  53. 53.
    W.D. Swearingen, T.F. Slaper, Economic impacts of technology transfer: two case studies from the U.S. department of defense. les Novelles, (2012)Google Scholar
  54. 54.
    A.J. Stevens, The enactment of Bayh–Dole. J. Tech. Trans. 29, 93–99 (2004)CrossRefGoogle Scholar
  55. 55.
    J.G. Thursby, M.C. Thursby, Who is selling the ivory tower? Sources of growth in university licensing. Manag. Sci. 0, 1–15 (2001)Google Scholar
  56. 56.
    B. Bastani, E. Mintarno, D. Fernandez, Tools of the Technology Transfer Trade–Licensing Intellectual Property from University to Industry (Tech Monitor, May-Jun, 2004)Google Scholar
  57. 57.
    J.G. Thursby, M.C. Thursby, Industry perspectives on licensing university technologies: sources and problems. AUTM J. XII, (2000)Google Scholar
  58. 58.
    H.W. Chesbrough, The era of open innovation. MIT Sloan Manag. Rev. April 2013Google Scholar
  59. 59.
    T. Hockaday, Phases of growth in university technology transfer, les Novelles, Dec 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. David Musgraves
    • 1
    Email author
  • Jennifer McKinley
    • 1
  • Peter Wachtel
    • 1
  1. 1.IRradiance Glass IncOrlandoUSA

Personalised recommendations