Skip to main content

The Procter and Gamble Company: Current State and Future Needs in Materials Modeling

  • Chapter
  • First Online:
Materials Research for Manufacturing

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 224))

Abstract

New material development and commercial application is often quite complex due to the material properties and multiple transformations materials undergo in the supply chain, manufacturing process, and distribution of the finished product. In the fast-moving consumer goods industry of personal and household care products, these complexities are particularly acute due to the focus on and use of “commodity” materials that, at times, have significant variability in material properties. These materials are often formulated into complex liquids or assembled products, which undergo multiple transformations during making and can further undergo additional changes during distribution and use by the consumer (some desired, some not). At each stage of development, manufacturing, and distribution, materials models can be tremendously helpful in material and process selection and optimization. This chapter provides an overview of the current state-of-the-art in materials modeling as applied to the soft materials typically used in household and personal care products, with particular focus on modeling tools that span the length and time scales most relevant for modeling. We review the tools and methods in materials modeling and provide several examples where these tools have been used to guide the development of new materials. We conclude with commentary on additional advancements needed to drive practical application of these modeling tools more broadly for material development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, M.L. Klein, A coarse grain model for phospholipid simulations. J. Phys. Chem. B 105(19), 4464–4470 (2001)

    Article  Google Scholar 

  2. J.C. Shelley, M.Y. Shelley, Computer simulation of surfactant solutions. Curr. Opin. Colloid Interface Sci. 5, 101–110 (2000)

    Article  Google Scholar 

  3. X. He, W. Shinoda, R. DeVane, K.L. Anderson, M.L. Klein, Paramaterization of a coarse-grained model for linear alkylbenzene sulfonate surfactants and molecular dynamics studies of their self-assembly in aqueous solution. Chem. Phys. Lett. 487, 71–76 (2010)

    Article  Google Scholar 

  4. Y. Wang, J.A. Wallace, P.H. Koenig, J.K. Shen, Molecular dynamics simulations of ionic and nonionic surfactant micelles with a generalized born implicit-solvent model. J. Comput. Chem. 32(11), 2348–2358 (2011)

    Article  Google Scholar 

  5. B.H. Morrow, P.H. Koenig, J.K. Shen, Atomistic simulations of pH-dependent self-assembly of micelle and bilayer from fatty acids. J. Chem. Phys. 137(19), 194902 (2012)

    Article  Google Scholar 

  6. W. Shinoda, R. DeVane, M.L. Klein, Computer simulation studies of self-assembling macromolecules. Curr. Opin. Struct. Biol. 22(2), 175–186 (2012)

    Article  Google Scholar 

  7. B.H. Morrow, P.H. Koenig, J.K. Shen, Self-assembly and bilayer-micelle transition of fatty acids studied by replica-exchange constant ph molecular dynamics. Langmuir 29(48), 14823–14830 (2013)

    Article  Google Scholar 

  8. G. Fiorin, M.L. Klein, R. DeVane, W. Shinoda, Computer simulation of self-assembling macromolecules. Adv. Polym. Sci. 262, 93–108 (2013)

    Article  Google Scholar 

  9. X. Tang, P.H. Koenig, R.G. Larson, Molecular dynamics simulations of sodium dodecyl sulfate micelles in water—the effect of the force field. J. Phys. Chem. B 118(14), 3864–3880 (2014)

    Article  Google Scholar 

  10. R.C. Runnebaum, E.J. Maginn, Molecular dynamics simulations of alkanes in the zeolite silicalite: Evidence for resonant diffusion effects. J. Phys. Chem. B 101(33), 6394–6408 (1997)

    Article  Google Scholar 

  11. C. Wijmans, P. Linse, Monte Carlo simulations of the adsorption of amphiphilic oligomers at hydrophobic interfaces. J. Chem. Phys. 106(1), 328–338 (1997)

    Article  Google Scholar 

  12. D.H. Melik, Adsorption from a well-stirred solution of finite volume. I. Linear adsorption kinetics through a stagnant boundary layer. J. Colloid Interface Sci. 138(2), 397–413 (1990)

    Article  Google Scholar 

  13. H. Furuya, M. Mondello, H.J. Yang, R.J. Roe, R.W. Erwin, C.C. Han, S.D. Smith, Molecular dynamics simulation of atactic polystyrene. 2. Comparison with neutron scattering data. Macromolecules 27(20), 5674–5680 (1994)

    Article  Google Scholar 

  14. D.C. Fleming, C. Morrow, C.W. Clarke, C.E. Bird, Finite element simulation of delamination with application to crashworthy design. J. Am. Helicopter Soc. 53(3), 267–281 (2008)

    Article  Google Scholar 

  15. A. Kaushik, A. Waas, E. Arruda, A constitutive model for finite deformation response of layered polyurethane-montmorillonite nanocomposites. Mech. Mater. 43(4), 186–193 (2011)

    Article  Google Scholar 

  16. F. Karadagli, D. McAvoy, B. Rittmann, Development of a mathematical model for physical disintegration of flushable consumer products in wastewater systems. Water Environ. Res. 81(5), 459–465 (2009)

    Article  Google Scholar 

  17. H.J.G. Diersch, V. Clausnitzer, V. Myrnyy, R. Rosati, M. Schmidt, H. Beruda, B.J. Ehrnsperger, R. Virgilio, Modeling unsaturated flow in absorbent swelling porous media: Part 1. Theory. Transp. Porous Media 83(3), 437–464 (2010)

    Article  Google Scholar 

  18. H.J.G. Diersch, V. Clausnitzer, V. Myrnyy, R. Rosati, M. Schmidt, H. Beruda, B.J. Ehrnsperger, R. Virgilio, Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 2. Numerical Simulation. Transp. Porous Media 86(3), 753–776 (2011)

    Article  Google Scholar 

  19. J.P. Hecht, C.J. King, Spray drying: Influence of developing drop morphology on drying rates and retention of volatile substances. 2. Modeling. Ind. Eng. Chem. Res. 39(6), 1766–1774 (2000)

    Article  Google Scholar 

  20. A. Braumann, M.J. Goodson, M. Kraft, P.R. Mort, Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction. Chem. Eng. Sci. 62(17), 4717–4728 (2007)

    Article  Google Scholar 

  21. D. Ronen, C.F.W. Sanders, H.S. Tan, P.R. Mort, F.J. Doyle, Predictive modeling of key process variables in granulation processes based on dynamic partial least squares. IFAC Proc. 7, 411–416 (2009)

    Google Scholar 

  22. C.S. Handscomb, M. Kraft, A.E. Bayly, A new model for the drying of droplets containing suspended solids after shell formation. Chem. Eng. Sci. 64(2), 228–246 (2009)

    Article  Google Scholar 

  23. C.S. Handscomb, M. Kraft, A.E. Bayly, A new model for the drying of droplets containing suspended solids. Chem. Eng. Sci. 64(4), 628–637 (2009)

    Article  Google Scholar 

  24. A. Braumann, M. Kraft, P.R. Mort, Parameter estimation in a multidimensional granulation mode. Powder Technol. 197(3), 196–210 (2010)

    Article  Google Scholar 

  25. E. Supuk, A. Hassanpour, H. Ahmadian, M. Ghadiri, T. Matsuyama, Tribo-electrification and associated segregation of pharmaceutical bulk powders. KONA Powder Part. J. 29, 208–223 (2011)

    Article  Google Scholar 

  26. D. Ronen, C.F.W. Sanders, H.S. Tan, P.R. Mort, F.J. Doyle, Predictive dynamic modeling of key process variables in granulation processes using partial least squares approach. Ind. Eng. Chem. Res. 50(3), 1419–1426 (2011)

    Article  Google Scholar 

  27. A. Clark, P. Mort, R. Behringer, Coarse graining for an impeller-driven mixer system. Granular Matter 14(2), 283–288 (2012)

    Article  Google Scholar 

  28. V. Vidyapati, S. Subramaniam, Granular flow in silo discharge: discrete element method simulations and model assessment. Ind. Eng. Chem. Res. 52(36), 13171–13182 (2013)

    Article  Google Scholar 

  29. S.C. Thakur, H. Ahmadian, J. Sun, J.Y. Ooi, An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology 12(1), 2–12 (2014)

    Article  Google Scholar 

  30. R.B. Pandey, K.L. Anderson, B.L. Farmer, Multiscale dynamics of an interacting sheet by a bond-fluctuating Monte Carlo simulation. J. Polym. Sci., Part B: Polym. Phys. 44(18), 2512–2523 (2006)

    Article  Google Scholar 

  31. R.B. Pandey, K.L. Anderson, B.L. Farmer, Exfoliation of stacked sheets: Effects of temperature, platelet size, and quality of solvent by a Monte Carlo simulation. J. Polym. Sci., Part B: Polym. Phys. 44(24), 3580–3589 (2006)

    Article  Google Scholar 

  32. C.Y. Yang, Y. Ding, D. York, W. Broeckx, Numerical simulation of sedimentation of microparticles using the discrete particle method. Particuology 6(1), 38–49 (2008)

    Article  Google Scholar 

  33. C.C. Chiu, R.H. DeVane, M.L. Klein, W. Shinoda, P.B. Moore, S.O. Nielsen, Effect of carboxylation on carbon nanotube aqueous dispersibility: A predictive coarse-grained molecular dynamics approach. J. Phys. Chem. C 116(43), 23102–23106 (2012)

    Article  Google Scholar 

  34. Y. Yang, A. Corona, M.A. Henson, Experimental investigation and population balance equation modeling of solid lipid nanoparticle aggregation dynamics. J. Colloid Interface Sci. 374(1), 297–307 (2012)

    Article  Google Scholar 

  35. R. Mercade-Prieto, B. Nguyen, R. Allen, D. York, J.A. Preece, T.E. Goodwin, Z. Zhang, Determination of the elastic properties of single microcapsules using micromanipulation and finite element modeling. Chem. Eng. Sci. 66(10), 2042–2049 (2011)

    Article  Google Scholar 

  36. D.T. Stanton, Development of a quantitative structure-property relationship model for estimating normal boiling points of small multifunctional organic molecules. J. Chem. Inf. Comput. Sci. 40(1), 81–90 (2000)

    Article  Google Scholar 

  37. D.T. Stanton, S. Dimitrov, V. Grancharov, O.G. Mekenyan, Charged partial surface area (CPSA) descriptors QSAR applications. SAR QSAR Environ. Res. 13(2), 341–351 (2002)

    Article  Google Scholar 

  38. D.T. Stanton, On the Physical Interpretation of QSAR Models. J. Chem. Inf. Comput. Sci. 43(5), 1423–1433 (2003)

    Article  Google Scholar 

  39. R. Guha, D. Stanton, P. Jurs, Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases. J. Chem. Inf. Model. 45(4), 1109–1121 (2005)

    Article  Google Scholar 

  40. J. Jaworska, N. Nikolova-Jeliazkova, T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review. ATLA Altern. Lab. Anim. 33(5), 445–459 (2005)

    Google Scholar 

  41. D.T. Stanton, On the importance of topological descriptors in understanding structure-property relationships. J. Comput. Aided Mol. Des. 22, 441–460 (2008)

    Article  Google Scholar 

  42. D.T. Stanton, QSAR and QSPR model interpretation using partial least squares (PLS) analysis. Curr. Comput. Aided Drug Des. 8(2), 107–127 (2012)

    Article  Google Scholar 

  43. J.C. Phillips, W.B. Gibson, J. Yam, C.L. Alden, G.C. Hard, Survey of the QSAR and in vitro approaches for developing non-animal methods to supersede the in vivo LD50 test. Food Chem. Toxicol. 28(5), 375–394 (1990)

    Article  Google Scholar 

  44. J.D. McKinney, A. Richard, C. Waller, M.C. Newman, F. Gerberick, The practice of structure activity relationships (SAR) in toxicology. Toxicol. Sci. 56(1), 8–17 (2000)

    Article  Google Scholar 

  45. A. Kulkarni, A.J. Hopfinger, R. Osborne, L.H. Bruner, E.D. Thompson, Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol. Sci. 59(2), 335–345 (2001)

    Article  Google Scholar 

  46. K. Kodithala, A.J. Hopfinger, E.D. Thompson, M.K. Robinson, Prediction of skin irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol. Sci. 66(2), 336–346 (2002)

    Article  Google Scholar 

  47. J.S. Jaworska, M. Comber, C. Auer, C.J. Van Leeuwen, Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints. Environ. Health Perspect. 111(10), 1358–1360 (2003)

    Article  Google Scholar 

  48. N. Nikolova-Jeliazkova, J. Jaworska, An approach to determining applicability domains for QSAR group contribution models: An analysis of SRC KOWWIN. ATLA Altern. Lab. Anim. 33(5), 461–470 (2005)

    Google Scholar 

  49. G. Patlewicz, A.O. Aptula, E. Uriarte, D.W. Roberts, P.S. Kern, G.F. Gerberick, I. Kimber, R.J. Dearman, C.A. Ryan, D.A. Basketter, An evaluation of selected global (Q)SARs/expert systems for the prediction of skin sensitisation potential. SAR QSAR Environ. Res. 18, 515–541 (2007)

    Article  Google Scholar 

  50. Y. Li, D. Pan, J. Liu, P.S. Kern, G.F. Gerberick, A.J. Hopfinger, Y.J. Tseng, Categorical QSAR models for skin sensitization based upon local lymph node assay classification measures Part 2: 4D-fingerprint three-state and two-2-state logistic regression models. Toxicol. Sci. 99(2), 532–544 (2007)

    Article  Google Scholar 

  51. Y. Li, Y.J. Tseng, D. Pan, J. Liu, P.S. Kern, G.F. Gerberick, A.J. Hopfinger, 4D-fingerprint categorical QSAR models for skin sensitization based on the classification of local lymph node assay measures. Chem. Res. Toxicol. 20(1), 114–128 (2007)

    Article  Google Scholar 

  52. G. Patlewicz, S.D. Dimitrov, L.K. Low, P.S. Kern, G.D. Dimitrova, M.I.H. Comber, A.O. Aptula, R.D. Phillips, J. Niemelä, C. Madsen, E.B. Wedebye, D.W. Roberts, P.T. Bailey, O.G. Mekenyan, TIMES-SS-A promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. Regul. Toxicol. Pharmacol. 48(2), 225–239 (2007)

    Article  Google Scholar 

  53. J. Liu, P.S. Kern, G.F. Gerberick, O.A. Santos-Filho, E.X. Esposito, A.J. Hopfinger, Y.J. Tseng, Categorical QSAR models for skin sensitization based on local lymph node assay measures and both ground and excited state 4D-fingerprint descriptors. J. Comput. Aided Mol. Des. 22, 345–366 (2008)

    Article  Google Scholar 

  54. C.E. Cowan, T.W. Federle, R.J. Larson, T.C. Feijtel, Impact of biodegradation test methods on the development and applicability of biodegradation QSARS. SAR QSAR Environ. Res. 5(1), 37–49 (1996)

    Article  Google Scholar 

  55. D.J. Versteeg, D.T. Stanton, M.A. Pence, C. Cowan, Effects of surfactants on the rotifer, Brachionus calyciflorus, in a chronic toxicity test and in the development of QSARs. Environ. Toxicol. Chem. 16(5), 1051–1058 (1997)

    Article  Google Scholar 

  56. L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 111(10), 1361–1375 (2003)

    Article  Google Scholar 

  57. S.H. Jackson, C.E. Cowan-Ellsberry, G. Thomas, Use of quantitative structural analysis to predict fish bioconcentration factors for pesticides. J. Agric. Food Chem. 57(3), 958–967 (2009)

    Article  Google Scholar 

  58. K. Binder, A. Milchev, Off-lattice Monte Carlo methods for coarse-grained models of polymeric materials and selected applications. J. Comput. Mater. Des. 9, 33–74 (2002)

    Article  Google Scholar 

  59. G. Zhao, J.R. Perilla, E.L. Yufenyuy, X. Ming, B. Chen, J. Ning, J. Ahn, A.M. Gronenborn, K. Schulten, C. Aiken, P. Zhang, Mature HIV-1 capsid structure by cryo-eletron microscopy and all-atom molecular dynamcs. Nature 497(7451), 643–646 (2013)

    Article  Google Scholar 

  60. K. Kremer, G.S. Grest, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 92(8), 5057 (1990)

    Article  Google Scholar 

  61. R. Faller, Automatic coarse graining of polymers. Polymer (Guildf) 45(11), 3869–3876 (2004)

    Article  Google Scholar 

  62. P.T. Underhill, P.S. Doyle, On the coarse-graining of polymers into bead-spring chains. J. Nonnewton. Fluid Mech. 122(1–3), 3–31 (2004)

    Article  Google Scholar 

  63. F. Müller-Plathe, Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3(9), 755–769 (2002)

    Article  Google Scholar 

  64. J.T. Padding, W.J. Briels, Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology. J. Phys.: Condens. Matter 23(23), 233101 (2011)

    Google Scholar 

  65. P. Carbone, C. Avendaño, Coarse-grained methods for polymeric materials: enthalpy- and entropy-driven models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4(1), 62–70 (2014)

    Article  Google Scholar 

  66. A.J. Clark, J. McCarty, I.Y. Lyubimov, M.G. Guenza, thermodynamic consistency in variable-level coarse graining of polymeric liquids. Phys. Rev. Lett. 109(16), 168301 (2012)

    Article  Google Scholar 

  67. A.J. Clark, J. McCarty, M.G. Guenza, Effective potentials for representing polymers in melts as chains of interacting soft particles. J. Chem. Phys. 139(12), 124906 (2013)

    Article  Google Scholar 

  68. J.-L. Barrat, J. Baschnagel, A.V. Lyulin, Molecular dynamics simulations of glassy polymers. Soft Matter 6(15), 3430 (2010)

    Article  Google Scholar 

  69. K. Binder, W. Paul, Monte Carlo simulations of polymer dynamics : recent advances basics of the monte carlo method in statistical. J. Polym. Sci., Part B: Polym. Phys. 35, 1–31 (1997)

    Article  Google Scholar 

  70. G.M. Odegard, Prediction of Mechanical Properties of Polymers with Various Force Fields,” no. April, pp. 1–12, 2005

    Google Scholar 

  71. S.C. Glotzer, W. Paul, Molecular and mesoscale simulation methods for polymer materials. Annu. Rev. Mater. Res. 32(1), 401–436 (2002)

    Article  Google Scholar 

  72. P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhys. Lett. 19(3), 155 (1992)

    Article  Google Scholar 

  73. R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107(11), 4423–4435 (1997)

    Article  Google Scholar 

  74. R.D. Groot, T.J. Madden, D.J. Tildesley, On the role of hydrodynamic interactions in block copolymer microphase separation. J. Chem. Phys. 110(19), 9739 (1999)

    Article  Google Scholar 

  75. S. Kumar, R.G. Larson, Brownian dynamics simulations of flexible polymers with spring–spring repulsions. J. Chem. Phys. 114(15), 6937 (2001)

    Article  Google Scholar 

  76. F. Goujon, P. Malfreyt, D.J. Tildesley, Mesoscopic simulation of entanglements using dissipative particle dynamics: application to polymer brushes. J. Chem. Phys. 129(3), 034902 (2008)

    Article  Google Scholar 

  77. S. Li, W.K. Liu, Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1 (2002)

    Article  Google Scholar 

  78. M.B. Liu, G.R. Liu, Smoothed particle hydrodynamics (sph): An overview and recent developments. Arch. Comput. Methods Eng. 17(1), 25–76 (2010)

    Article  Google Scholar 

  79. P. Español, M. Revenga, Smoothed dissipative particle dynamics. Phys. Rev. E 67(2), 026705 (2003)

    Article  Google Scholar 

  80. P.S. Doyle, P.T. Underhill, Brownian Dynamics Simulations of Polymers and Soft Matter, pp. 2619–2630, 2005

    Google Scholar 

  81. C. Cruz, F. Chinesta, G. Régnier, Review on the Brownian Dynamics Simulation of Bead-Rod-Spring Models Encountered in Computational Rheology. Arch. Comput. Methods Eng. 19(2), 227–259 (2012)

    Article  Google Scholar 

  82. G.H. Fredrickson, The equilibrium theory of inhomogeneous polymers (Oxford University Press, Oxford, 2006)

    Google Scholar 

  83. J.G.E.M. Fraaije, B.A.C. Van Vlimmeren, N.M. Maurits, M. Postma, O.A. Evers, C. Hoffmann, P. Altevogt, I Introduction, A General, “The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J. Chem. Phys. 106(10), 4260–4269 (2001)

    Article  Google Scholar 

  84. P. Altevogt, O.A. Evers, J.G.E.M. Fraaije, N.M. Maurits, B.A.C. Van Vlimmeren, J. Mol. Struct. (Theochem) 463, 139–143 (1999)

    Article  Google Scholar 

  85. V. Ganesan, G.H. Fredrickson, Field-theoretic polymer simulations. Europhys. Lett. 55(6), 814 (2001)

    Article  Google Scholar 

  86. A.M. Stoneham, J.H. Harding, Not too big, not too small: the appropriate scale. Nat. Mater. 2(2), 77–83 (2003)

    Article  Google Scholar 

  87. T. Gates, G.M. Odegard, S. Frankland, T. Clancy, Computational materials: Multi-scale modeling and simulation of nanostructured materials. Compos. Sci. Technol. 65(15–16), 2416–2434 (2005)

    Article  Google Scholar 

  88. B. Ensing, S.O. Nielsen, P.B. Moore, M.L. Klein, M. Parrinello, Energy conservation in adaptive hybrid atomistic/coarse-grain molecular dynamics. J. Chem. Theory Comput. 3(3), 1100–1105 (2007)

    Article  Google Scholar 

  89. S.O. Nielsen, P.B. Moore, B. Ensing, Adaptive Multiscale Molecular Dynamics of Macromolecular Fluids. Phys. Rev. Lett. 105(23), 237802 (2010)

    Article  Google Scholar 

  90. M. Praprotnik, L.D. Site, K. Kremer, Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu. Rev. Phys. Chem. 59, 545–571 (2008)

    Article  Google Scholar 

  91. A.J. Rzepiela, M. Louhivuori, C. Peter, S.J. Marrink, Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys. Chem. Chem. Phys. 13(22), 10437–10448 (2011)

    Article  Google Scholar 

  92. F.F. Abraham, J.Q. Broughton, N. Bernstein, Spanning the length scales in dynamic simulation. Am. Inst. Phys. 12(6), 538 (1998)

    Google Scholar 

  93. W.A. Curtin, R.E. Miller, Atomistic / continuum coupling in computational. Model. Simul. Mater. Sci. Eng. 11, R33 (2003)

    Article  Google Scholar 

  94. S.P. Xiao, T. Belytschko, A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193(17–20), 1645–1669 (2004)

    Article  Google Scholar 

  95. W.K. Liu, H.S. Park, D. Qian, E.G. Karpov, H. Kadowaki, G.J. Wagner, Bridging scale methods for nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 195(13–16), 1407–1421 (2006)

    Article  Google Scholar 

  96. B. Eidel, A. Stukowski, A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57(1), 87–108 (2009)

    Article  Google Scholar 

  97. B. Liu, Y. Huang, H. Jiang, S. Qu, K.C. Hwang, The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193(17–20), 1849–1864 (2004)

    Article  Google Scholar 

  98. S. Kohlhoff, P. Gumbsch, H.F. Fischmeister, Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos. Mag. A 64(4), 851–878 (1991)

    Article  Google Scholar 

  99. L.E. Shilkrot, R.E. Miller, W.A. Curtin, Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52(4), 755–787 (2004)

    Article  Google Scholar 

  100. S. Badia, M. Parks, P. Bochev, M. Gunzburger, R. Lehoucq, On atomistic-to-continuum coupling by blending. Multiscale Model. Simul. 7(1), 381–406 (2008)

    Article  Google Scholar 

  101. Q. Yang, E. Biyikli, A.C. To, Multiresolution molecular mechanics: Statics. Comput. Methods Appl. Mech. Eng. 258, 26–38 (2013)

    Article  Google Scholar 

  102. M. Laso, H.C. Öttinger, Calculation of viscoelastic flow using molecular models: the connffessit approach. J. Nonnewton. Fluid Mech. 47, 1–20 (1993)

    Article  Google Scholar 

  103. K. Feigl, M. Laso, H.C. Ottinger, CONNFFESSIT approach for solving a two-dimensional viscoelastic fluid problem. Macromolecules 28(9), 3261–3274 (1995)

    Article  Google Scholar 

  104. M.C. Araújo, J.P. Martins, S.M. Mirkhalaf, S. Lanceros-Mendez, F.M.A. Pires, R. Simoes, Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation. Appl. Surf. Sci. 306, 37–46 (2014)

    Article  Google Scholar 

  105. I. Noda, M.M. Satkowski, A.E. Dowrey, C. Marcott, Polymer alloys of nodax copolymers and poly (lactic acid). Macromol. Biosci. 4, 269–275 (2004)

    Article  Google Scholar 

  106. I. Noda, S.B. Lindsey, D. Caraway, Nodax TM Class PHA Copolymers : Their Properties and Applications, vol. 14, (2010)

    Google Scholar 

  107. H. Alata, T. Aoyama, Y. Inoue, Effect of aging on the mechanical properties of poly(3-hydroxybutyrate- co -3-hydroxyhexanoate). Macromolecules 40(13), 4546–4551 (2007)

    Article  Google Scholar 

  108. D. Brown, J.H.R. Clarke, Molecular dynamics computer simulation of polymer fiber microstructure. J. Chem. Phys. 84(5), 2858 (1985)

    Article  Google Scholar 

  109. D. Brown, J.H.R. Clarke, Molecular dynamics simulation of an amorphous polymer under tension. 1. phenomenology. Macromolecules 24, 2075–2082 (1991)

    Article  Google Scholar 

  110. M. Parrinello, A. Rahman, Strain fluctuations and elastic constants. J. Chem. Phys. 76(5), 2662–2666 (1982)

    Article  Google Scholar 

  111. D.N. Theodorou, U.W. Suter, Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 19, 139–154 (1986)

    Article  Google Scholar 

  112. J.R. Ray, Elastic constants and statistical ensembles in molecular dynamics (North-Holland, Amsterdam, 1988)

    Google Scholar 

  113. A.V. Lyulin, N.K. Balabaev, M.A. Mazo, M.A.J. Michels, Molecular dynamics simulation of uniaxial deformation of glassy amorphous atactic polystyrene. Macromolecules 37(23), 8785–8793 (2004)

    Article  Google Scholar 

  114. A.V. Lyulin, B. Vorselaars, M.A. Mazo, N.K. Balabaev, M.A.J. Michels, Strain softening and hardening of amorphous polymers: Atomistic simulation of bulk mechanics and local dynamics. Europhys. Lett. 71(4), 618–624 (2005)

    Article  Google Scholar 

  115. F.M. Capaldi, M. Boyce, G. Rutledge, Enhanced mobility accompanies the active deformation of a glassy amorphous polymer. Phys. Rev. Lett. 89(17), 175505 (2002)

    Article  Google Scholar 

  116. F.M. Capaldi, M.C. Boyce, G.C. Rutledge, Molecular response of a glassy polymer to active deformation. Polymer (Guildf) 45(4), 1391–1399 (2004)

    Article  Google Scholar 

  117. J. Rottler, M. Robbins, Yield conditions for deformation of amorphous polymer glasses. Phys. Rev. E 64(5), 051801 (2001)

    Article  Google Scholar 

  118. R.S. Hoy, M.O. Robbins, Strain Hardening of Polymer Glasses: Entanglements, Energetics, and Plasticity, vol. 21218, (2008)

    Google Scholar 

  119. V. Sudarkodi, S. Basu, Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers. Int. J. Plast 56, 139–155 (2014)

    Article  Google Scholar 

  120. K. Yoshimoto, T. Jain, K. Van Workum, P. Nealey, J. de Pablo, Mechanical heterogeneities in model polymer glasses at small length scales. Phys. Rev. Lett. 93(17), 175501 (2004)

    Article  Google Scholar 

  121. K. Van Workum, J.J. De Pablo, Local elastic constants in thin films of an FCC crystal. Phys. Rev. E 67(3), 31601 (2002)

    Article  Google Scholar 

  122. K. Van Workum, J.J. De Pablo, U.V Wisconsin-madison, Computer simulation of the mechanical nanostructures, pp. 3–8 (2003)

    Google Scholar 

  123. E. Riccardi, M.C. Böhm, F. Müller-Plathe, Molecular dynamics method to locally resolve poisson’s ratio: mechanical description of the solid–soft-matter interphase. Phys. Rev. E 86(3), 036704 (2012)

    Article  Google Scholar 

  124. G. Odegard, Constitutive modeling of nanotube–reinforced polymer composites. Compos. Sci. Technol. 63(11), 1671–1687 (2003)

    Article  Google Scholar 

  125. S. Frankland, The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63(11), 1655–1661 (2003)

    Article  Google Scholar 

  126. M. Griebel, J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput. Methods Appl. Mech. Eng. 193, 1773–1788 (2004)

    Article  Google Scholar 

  127. G.M. Odegard, T.C. Clancy, T.S. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer (Guildf) 46(2), 553–562 (2005)

    Article  Google Scholar 

  128. E.B. Stukalin, J.F. Douglas, K.F. Freed, Plasticization and antiplasticization of polymer melts diluted by low molar mass species. J. Chem. Phys. 132, 84504 (2010)

    Article  Google Scholar 

  129. R.A. Riggleman, K. Yoshimoto, J. Douglas, J. de Pablo, Influence of confinement on the fragility of antiplasticized and pure polymer films. Phys. Rev. Lett. 97(4), 045502 (2006)

    Article  Google Scholar 

  130. S.P. Delcambre, R.A. Riggleman, J.J. de Pablo, P.F. Nealey, Mechanical properties of antiplasticized polymer nanostructures. Soft Matter 6(11), 2475 (2010)

    Article  Google Scholar 

  131. Y. Xu, J. Feng, H. Liu, Y. Hu, Microphase separation of graft-diblock copolymer by dissipative particle dynamics simulation. Mol. Simul. 34(5), 559–565 (2008)

    Article  Google Scholar 

  132. X. Li, J. Guo, Y. Liu, H. Liang, Microphase separation of diblock copolymer poly(styrene-b-isoprene): A dissipative particle dynamics simulation study. J. Chem. Phys. 130(7), 074908 (2009)

    Article  Google Scholar 

  133. J.-J. Wang, Z.-Z. Li, X.-P. Gu, L.-F. Feng, C.-L. Zhang, G.-H. Hu, A dissipative particle dynamics study on the compatibilizing process of immiscible polymer blends with graft copolymers. Polymer (Guildf) 53(20), 4448–4454 (2012)

    Article  Google Scholar 

  134. A.A. Gavrilov, Y.V. Kudryavtsev, P.G. Khalatur, A.V. Chertovich, Microphase separation in regular and random copolymer melts by DPD simulations. Chem. Phys. Lett. 503(4–6), 277–282 (2011)

    Article  Google Scholar 

  135. Y. Zhu, Z. Ma, Y. Li, J. Cui, W. Jiang, Monte Carlo simulation of the compatibility of graft copolymer compatibilized two incompatible homopolymer blends: Effect of graft structure. J. Appl. Polym. Sci. 105(3), 1591–1596 (2007)

    Article  Google Scholar 

  136. L. Zhou, J. Zhang, J. Fang, B. Sun, Ordered microstructures self-assembled from A 2 m + 1 B m C m comblike copolymers. J. Polym. Res. 18(5), 1053–1058 (2010)

    Article  Google Scholar 

  137. K.C. Daoulas, M. Müller, Single chain in mean field simulations: quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations. J. Chem. Phys. 125(18), 184904 (2006)

    Article  Google Scholar 

  138. M. Muller, G.D. Smith, Phase separation in binary mixtures containing polymers: a quantitative comparison of single-chain-in-mean-field simulations and computer simulations of the corresponding multichain systems. J. Polym. Sci., Part B: Polym. Phys. 43(8), 934–958 (2005)

    Article  Google Scholar 

  139. N.M. Maurits, A.V. Zvelindovsky, G.J.A. Sevink, B.A.C. van Vlimmeren, J.G.E.M. Fraaije, Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach. J. Chem. Phys. 108(21), 9150 (1998)

    Article  Google Scholar 

  140. T. Honda, T. Kawakatsu, Hydrodynamic effects on the disorder-to-order transitions of diblock copolymer melts. J. Chem. Phys. 129(11), 114904 (2008)

    Article  Google Scholar 

  141. L. Zhang, A. Sevink, F. Schmid, Hybrid lattice boltzmann/dynamic self-consistent field simulations of microphase separation and vesicle formation in block copolymer systems. Macromolecules 44(23), 9434–9447 (2011)

    Article  Google Scholar 

  142. P. Sandhu, J. Zong, D. Yang, Q. Wang, On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation. J. Chem. Phys. 138(19), 194904 (2013)

    Article  Google Scholar 

  143. T. Visser, M. Wessling, When do sorption-induced relaxations in glassy polymers set in? Macromolecules 40(14), 4992–5000 (2007)

    Article  Google Scholar 

  144. S.P. Nalawade, F. Picchioni, L.P.B.M. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog. Polym. Sci. 31(1), 19–43 (2006)

    Article  Google Scholar 

  145. A.A. Gusev, U.W. Suter, Dynamics of small molecules in dense polymers subject to thermal motion. J. Chem. Phys. 99(3), 2228 (1993)

    Article  Google Scholar 

  146. T. Spyriouni, G.C. Boulougouris, D.N. Theodorou, Prediction of sorption of CO2 in glassy atactic polystyrene at elevated pressures through a new computational scheme. Macromolecules 42(5), 1759–1769 (2009)

    Article  Google Scholar 

  147. I. Cozmuta, M. Blanco, W.A.G. Iii, Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations. J. Phys. Chem. B 111(12), 3151–3166 (2007)

    Article  Google Scholar 

  148. O. Hölck, M. Böhning, M. Heuchel, M.R. Siegert, D. Hofmann, Gas sorption isotherms in swelling glassy polymers—detailed atomistic simulations. J. Memb. Sci. 428, 523–532 (2013)

    Article  Google Scholar 

  149. H. Abou-Rachid, L.-S. Lussier, S. Ringuette, X. Lafleur-Lambert, M. Jaidann, J. Brisson, On the correlation between miscibility and solubility properties of energetic plasticizers/polymer blends: modeling and simulation studies. Propellants, Explos. Pyrotech. 33(4), 301–310 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell H. DeVane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DeVane, R.H., Wagner, M.S., Murch, B.P. (2016). The Procter and Gamble Company: Current State and Future Needs in Materials Modeling. In: Madsen, L., Svedberg, E. (eds) Materials Research for Manufacturing. Springer Series in Materials Science, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-23419-9_10

Download citation

Publish with us

Policies and ethics