Neumann Series Analysis of the Wigner Equation Solution

  • I. DimovEmail author
  • M. Nedjalkov
  • J. M. Sellier
  • S. Selberherr
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 22)


The existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be separated from the physical attributes of the solution. In the presented analysis these two sides of the problem mutually interplay.

The problem is first formulated from a physical point of view, where the stationary solution is considered as the long time limit of the general evolution problem posed by both initial and boundary conditions. The proof of convergence relies on the assumption for reasonable local conditions which may be specified for the kernel and on the fact that the Neumann series expansion corresponds to an integral equation of Volterra type with respect to the time variable.


Electron transport Neumann series analysis Semiconductor Wigner equation 



This work has been supported by the EC FP7 Project AComIn (FP7-REGPOT-2012-2013-1), the Austrian Science Fund Project FWF-P21685-N22, as well as the Bulgarian Science Fund under grant DFNI I 02/20.


  1. 1.
    Arnold, A., Ringhofer, C.: An operator splitting method for the wigner’ Poisson problem. SIAM J. Numer. Anal. 33, 1622–1643 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Manzini, C., Barletti, L.: An analysis of the Wigner’ Poisson problem with inflow boundary conditions. Nonlinear Anal. 60, 77–100 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Li, R., Lu, T., Sun, Z.: Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution? SIAM J. Appl. Math. 74(3), 885–897 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Nedjalkov, M., Dimov, I., Rossi, F., Jacoboni, C.: Convergency of the Monte Carlo algorithm for the Wigner quantum transport equation. J. Math. Comput. Model. 23, 159–166 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319–115335 (2004)CrossRefGoogle Scholar
  6. 6.
    Rosati, R., Dolcini, F., Iotti, R.C., Rossi, F.: Wigner-function formalism applied to semiconductor quantum devices: failure of the conventional boundary condition scheme. Phys. Rev. B 88, 035401 (2013)CrossRefGoogle Scholar
  7. 7.
    Dimov, I.: Monte Carlo Methods for Applied Scientists, 291 pp. World Scientific, Singapore (2008)zbMATHGoogle Scholar
  8. 8.
    Nedjalkov, M., Vasileska, D., Dimov, I., Arsov, G.: Mixed initial-boundary value problem in particle modeling of microelectronic devices. Monte Carlo Methods Appl. 13, 299–331 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Moyal, J.E.: Quantum mechanics as a statistical theory. In: Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 99–124 (1949)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Groenewold, H.J.: On the Principles of Elementary Quantum Mechanics. Doctoral thesis (1946)Google Scholar
  11. 11.
    Dias, N.C., Prata, J.N.: Admissible states in quantum phase space. Ann. Phys. 313, 110–146 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nashed, M., Wahba, G.: Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind. Math. Comput. 28, 69–80 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H.: Wigner function approach. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling. Springer, Berlin (2011)Google Scholar
  14. 14.
    Nedjalkov, M., Selberherr, S., Ferry, D.K., Vasileska, D., Dollfus, P., Querlioz, D., Dimov, I., Schwaha, P.: Physical scales in the Wigner-Boltzmann equation. Ann. Phys. 328, 220–237 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • I. Dimov
    • 1
    Email author
  • M. Nedjalkov
    • 2
  • J. M. Sellier
    • 1
  • S. Selberherr
    • 2
  1. 1.IICTBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations