Skip to main content

Neumann Series Analysis of the Wigner Equation Solution

  • Conference paper
  • First Online:

Part of the book series: Mathematics in Industry ((TECMI,volume 22))

Abstract

The existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be separated from the physical attributes of the solution. In the presented analysis these two sides of the problem mutually interplay.

The problem is first formulated from a physical point of view, where the stationary solution is considered as the long time limit of the general evolution problem posed by both initial and boundary conditions. The proof of convergence relies on the assumption for reasonable local conditions which may be specified for the kernel and on the fact that the Neumann series expansion corresponds to an integral equation of Volterra type with respect to the time variable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arnold, A., Ringhofer, C.: An operator splitting method for the wigner’ Poisson problem. SIAM J. Numer. Anal. 33, 1622–1643 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Manzini, C., Barletti, L.: An analysis of the Wigner’ Poisson problem with inflow boundary conditions. Nonlinear Anal. 60, 77–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, R., Lu, T., Sun, Z.: Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution? SIAM J. Appl. Math. 74(3), 885–897 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nedjalkov, M., Dimov, I., Rossi, F., Jacoboni, C.: Convergency of the Monte Carlo algorithm for the Wigner quantum transport equation. J. Math. Comput. Model. 23, 159–166 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319–115335 (2004)

    Article  Google Scholar 

  6. Rosati, R., Dolcini, F., Iotti, R.C., Rossi, F.: Wigner-function formalism applied to semiconductor quantum devices: failure of the conventional boundary condition scheme. Phys. Rev. B 88, 035401 (2013)

    Article  Google Scholar 

  7. Dimov, I.: Monte Carlo Methods for Applied Scientists, 291 pp. World Scientific, Singapore (2008)

    MATH  Google Scholar 

  8. Nedjalkov, M., Vasileska, D., Dimov, I., Arsov, G.: Mixed initial-boundary value problem in particle modeling of microelectronic devices. Monte Carlo Methods Appl. 13, 299–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Moyal, J.E.: Quantum mechanics as a statistical theory. In: Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 99–124 (1949)

    MathSciNet  MATH  Google Scholar 

  10. Groenewold, H.J.: On the Principles of Elementary Quantum Mechanics. Doctoral thesis (1946)

    Google Scholar 

  11. Dias, N.C., Prata, J.N.: Admissible states in quantum phase space. Ann. Phys. 313, 110–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nashed, M., Wahba, G.: Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind. Math. Comput. 28, 69–80 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H.: Wigner function approach. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling. Springer, Berlin (2011)

    Google Scholar 

  14. Nedjalkov, M., Selberherr, S., Ferry, D.K., Vasileska, D., Dollfus, P., Querlioz, D., Dimov, I., Schwaha, P.: Physical scales in the Wigner-Boltzmann equation. Ann. Phys. 328, 220–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the EC FP7 Project AComIn (FP7-REGPOT-2012-2013-1), the Austrian Science Fund Project FWF-P21685-N22, as well as the Bulgarian Science Fund under grant DFNI I 02/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Dimov, I., Nedjalkov, M., Sellier, J.M., Selberherr, S. (2016). Neumann Series Analysis of the Wigner Equation Solution. In: Russo, G., Capasso, V., Nicosia, G., Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23413-7_97

Download citation

Publish with us

Policies and ethics