Skip to main content

How to Include Pareto Front Computation, Discrete Parameter Values and Aging into Analog Circuit Sizing

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2014 (ECMI 2014)

Part of the book series: Mathematics in Industry ((TECMI,volume 22))

Included in the following conference series:

  • 696 Accesses

Abstract

Analog circuit sizing has strongly focused on the optimization of nominal performance and of the yield in the past. Recently, more topics in analog sizing have come up. These are Pareto optimization, optimization with discrete parameter values and consideration of aging effects in addition to manufacturing and operating tolerances. This contribution will illustrate these tasks and give problem formulations and solution approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antreich, K., Graeb, H.: Circuit optimization driven by worst-case distances. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 166–169 (1991)

    Google Scholar 

  2. Antreich, K., Graeb, H., Wieser, C.: Circuit analysis and optimization driven by worst-case distances. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 13(1), 57–71 (1994)

    Article  Google Scholar 

  3. Eick, M., Strasser, M., Lu, K., Schlichtmann, U., Graeb, H.: Comprehensive generation of hierarchical placement rules for analog integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(2), 180–193 (2011)

    Article  Google Scholar 

  4. Eick, M., Graeb, H.: MARS: matching-driven analog sizing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(12), 1145–1158 (2012)

    Article  Google Scholar 

  5. Eick, M., Graeb, H.: Towards automatic structural analysis of mixed-signal circuits. In: Fakhfakh, M., Tlelo-Cuautle, E., Castro-Lopez, R. (eds.) Analog/RF and Mixed-Signal Circuit Systematic Design, chap. 1, pp. 3–25. Springer, Berlin (2013)

    Chapter  Google Scholar 

  6. Graeb, H.: Analog Design Centering and Sizing. Springer, Berlin (2007)

    Google Scholar 

  7. Graeb, H., Zizala, S., Eckmueller, J., Antreich, K.: The sizing rules method for analog integrated circuit design. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 343–349 (2001)

    Google Scholar 

  8. Graeb, H., Mueller, D., Schlichtmann, U.: Pareto Optimization of Analog Circuits considering Variability. In: European Conference on Circuit Theory and Design (ECCTD), pp. 28–31 (2007)

    Google Scholar 

  9. Graeb, H., Mueller-Gritschneder, D., Schlichtmann, U.: Pareto optimization of analog circuits considering variability. Int. J. Circuit Theory Appl. 37(2), 283–299 (2009)

    Article  MATH  Google Scholar 

  10. Massier, T., Graeb, H., Schlichtmann, U.: The sizing rules method for CMOS and bipolar analog integrated circuit synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(12), 2209–2222 (2008)

    Article  Google Scholar 

  11. Mueller, D., Stehr, G., Graeb, H., Schlichtmann, U.: Deterministic approaches to analog performance space exploration (PSE). In: ACM/IEEE Design Automation Conference (DAC), pp. 869–874 (2005)

    Google Scholar 

  12. Mueller, D., Stehr, G., Graeb, H., Schlichtmann, U.: Fast evaluation of analog circuit structures by polytopal approximations. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1479–1482 (2006)

    Google Scholar 

  13. Mueller, D., Graeb, H., Schlichtmann, U.: Trade-off design of analog circuits using goal attainment and wave front sequential quadratic programming. In: Design, Automation and Test in Europe (DATE), pp. 75–80 (2007)

    Google Scholar 

  14. Mueller-Gritschneder, D., Graeb, H.: Computation of yield-optimized Pareto fronts for analog integrated circuit specifications. In: Design, Automation and Test in Europe (DATE) (2010)

    Google Scholar 

  15. Mueller-Gritschneder, D., Graeb, H., Schlichtmann, U.: A successive approach to compute the bounded Pareto front of practical multi-objective optimization problems. SIAM J Optim. 20(2), 915–934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pan, X., Graeb, H.: Degradation-aware analog design flow for lifetime yield analysis and optimization. In: IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2009)

    Google Scholar 

  17. Pan, X., Graeb, H.: Lifetime yield optimization: towards a robust analog design for reliability. In: Design, Automation and Test in Europe (DATE) University Booth (2010)

    Google Scholar 

  18. Pan, X., Graeb, H.: Reliability analysis of analog circuits by lifetime yield prediction using worst-case distance degradation rate. In: IEEE International Symposium on Quality Electronic Design (ISQED) (2010)

    Google Scholar 

  19. Pan, X., Graeb, H.: Reliability analysis of analog circuits using quadratic lifetime worst-case distance prediction. In: IEEE Custom Integrated Circuits Conference (CICC) (2010)

    Google Scholar 

  20. Pan, X., Graeb, H.: Lifetime Yield Optimization of Analog Circuits Considering Process Variations and Parameter Degradations, chap. 6, pp. 131–146. InTech (2011)

    Google Scholar 

  21. Pan, X., Graeb, H.: Reliability optimization of analog circuits with aged sizing rules and area trade-off. In: edaWorkshop, pp. 33–38. VDE Verlag GmbH (2011)

    Google Scholar 

  22. Pan, X., Graeb, H.: Reliability optimization of analog integrated circuits considering the trade-off between lifetime and area. Microelectron. Reliab. 52(8), 1559–1564 (2012)

    Article  Google Scholar 

  23. Pehl, M., Graeb, H.: RaGAzi: A random and gradient-based approach to analog sizing for mixed discrete and continuous parameters. In: International Symposium on Integrated Circuits (ISIC) (2009)

    Google Scholar 

  24. Pehl, M., Graeb, H.: Dimensionierung Analoger Schaltungen mit diskreten Parametern unter Verwendung eines Zufalls- und Gradientenbasierten Ansatzes. In: ITG/GMM-Fachtagung Entwurf von analogen Schaltungen mit CAE-Methoden (ANALOG) (2010)

    Google Scholar 

  25. Pehl, M., Graeb, H.: An SQP and branch-and-bound based approach for discrete sizing of analog circuits, chap. 13, pp. 297–316. InTech (2011)

    Google Scholar 

  26. Pehl, M., Graeb, H.: Tolerance design of analog circuits using a branch-and-bound based approach. J. Circuits Syst. Comput. 21(8), 1240022, 17p. (2012)

    Google Scholar 

  27. Pehl, M., Massier, T., Graeb, H., Schlichtmann, U.: A random and pseudo-gradient approach for analog circuit sizing with non-uniformly discretized parameters. In: IEEE International Conference on Computer Design (ICCD), pp. 188–193 (2008)

    Google Scholar 

  28. Pehl, M., Zwerger, M., Graeb, H.: Sizing analog circuits using an SQP and branch and bound based approach. In: IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2010)

    Google Scholar 

  29. Pehl, M., Zwerger, M., Graeb, H.: Variability-aware automated sizing of analog circuits considering discrete design parameters. In: International Symposium on Integrated Circuits (ISIC) (2011)

    Google Scholar 

  30. Zou, J., Mueller, D., Graeb, H., Schlichtmann, U., Hennig, E., Sommer, R.: Fast automatic sizing of a charge pump phase-locked loop based on behavioral models. In: IEEE International Behavioral Modeling and Simulation Conference, pp. 100–105 (2005)

    Google Scholar 

  31. Zou, J., Mueller, D., Graeb, H., Schlichtmann, U.: A CPPLL hierarchical optimization methodology considering jitter, power and locking time. In: ACM/IEEE Design Automation Conference (DAC), pp. 19–24 (2006)

    Google Scholar 

  32. Zou, J., Mueller, D., Graeb, H., Schlichtmann, U.: Optimization of SC ΣΔ modulators based on worst-case-aware Pareto-optimal fronts. In: IEEE Custom Integrated Circuits Conference (CICC), pp. 607–610 (2007)

    Google Scholar 

  33. Zou, J., Mueller, D., Graeb, H., Schlichtmann, U.: Pareto-front computation and automatic sizing of CPPLLs. In: IEEE International Symposium on Quality Electronic Design, pp. 481–486 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Graeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Graeb, H. (2016). How to Include Pareto Front Computation, Discrete Parameter Values and Aging into Analog Circuit Sizing. In: Russo, G., Capasso, V., Nicosia, G., Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23413-7_56

Download citation

Publish with us

Policies and ethics