Skip to main content

Maxwell’s Fish-Eye in (2+1)D Spacetime Acoustics

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2014 (ECMI 2014)

Part of the book series: Mathematics in Industry ((TECMI,volume 22))

Included in the following conference series:

  • 1153 Accesses

Abstract

In the past few years Maxwell’s fish-eye lens has been subject to intense investigation in the context of transformation optics, mainly spurred by the possibility to create perfect imaging without the need to resort to negative refraction, one of the outstanding—but difficult to implement—properties of metamaterials. Here we extend this discussion to an acoustical fish-eye constructed in (2+1)D spacetime. The underlying acoustic wave is governed by a homogeneous spherical Helmholtz equation, which is shown to emerge from a variational principle in inherently covariant manner. The formal analytical solutions of the acoustic potential are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is customary to denote by Greek indices the usage of the full range of spacetime values for tensors, whereas Latin indices only run over the spatial values. Comma and semicolon are standard notation for partial and covariant derivatives, respectively.

References

  1. Calin, O., Chang, D.C.: Geometric Mechanics on Riemannian Manifolds: Applications to Partial Differential Equations. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  2. Chen, H.Y., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D 43(11), 113001 (2010)

    Article  Google Scholar 

  3. Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9(3), 45–52 (2007)

    Article  Google Scholar 

  4. García-Meca, C., Tung, M.M.: The variational principle in transformation optics engineering and some applications. Math. Comput. Model. 57(7–8), 1773–1779 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Horsley, S.A.R.: Transformation optics, isotropic chiral media and non-Riemannian geometry. New J. Phys. 13(5), 053053 (2011)

    Article  Google Scholar 

  6. Leonhardt, U., Philbin, T.: Geometry and Light—The Science of Invisibility. Dover Publications, Inc., New York (2010)

    MATH  Google Scholar 

  7. Lüneburg, R.K.: Mathematical Theory of Optics. University of California Press, Berkeley and Los Angeles (1966)

    MATH  Google Scholar 

  8. Mechel, F.P.: Formulas of Acoustics. Springer, Berlin (2002)

    Google Scholar 

  9. Norris, A.N.: Acoustic metafluids. J. Acoust. Soc. Am. 125(2), 839–849 (2009)

    Article  MathSciNet  Google Scholar 

  10. Tung, M.M.: Basics of a differential-geometric approach to diffusion: Uniting Lagrangian and Eulerian models on a manifold. In: Bonilla, L.L., Moscoso, M.A., Platero, G., Vega, J.M. (eds.) Progress in Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol. 12, pp. 897–901. Springer, Berlin (2007)

    Chapter  Google Scholar 

  11. Tung, M.M.: A fundamental Lagrangian approach to transformation acoustics and spherical spacetime cloaking. Europhys. Lett. 98, 34002–34006 (2012)

    Article  Google Scholar 

  12. Tung, M.M.: Diffusion on surfaces of revolution. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010, Mathematics in Industry, vol. 17, pp. 643–650. Springer, Berlin (2012)

    Chapter  Google Scholar 

  13. Tung, M.M., Hervás, A.: A differential-geometric approach to model isotropic diffusion on circular conic surfaces in uniform rotation. In: Fitt, A.D., Norbury, J., Ockendon, H., Wilson, E. (eds.) Progress in Industrial Mathematics at ECMI 2008. Mathematics in Industry, vol. 15, pp. 1053–1058. Springer, Berlin (2010)

    Chapter  Google Scholar 

  14. Tung, M.M., Peinado, J.: A covariant spacetime approach to transformation acoustics. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry, vol. XX. Springer, Berlin (2014)

    Google Scholar 

  15. Tung, M.M., Weinmüller, E.B.: Gravitational frequency shifts in transformation acoustics. Europhys. Lett. 101, 54006–54011 (2013). doi:10.1209/0295-5075/101/54006

    Article  Google Scholar 

  16. Visser, M., Barcelo, C., Liberati, S.: Analogue models of and for gravity. Gen. Relat. Gravit. 34, 1719–1734 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Tung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tung, M.M., Gambi, J.M., del Pino, M.L.G. (2016). Maxwell’s Fish-Eye in (2+1)D Spacetime Acoustics. In: Russo, G., Capasso, V., Nicosia, G., Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23413-7_126

Download citation

Publish with us

Policies and ethics