Parallel SAT-Based Parameterised Three-Valued Model Checking

  • Nils Timm
  • Stefan Gruner
  • Prince Sibanda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9232)


Parameterisation in three-valued model checking (PMC) allows to establish logical connections between unknown parts in state space models. The application of parameterisation enhances the precision of models without increasing their state space, but it leads to an exponential growth of the number of model checking instances that have to be checked consecutively. Here, we introduce a technique for PMC via parallel SAT solving which enables us to significantly reduce the time overhead of PMC by exploiting similarities among the instances. We define bounded semantics and a propositional logic encoding of PMC. Moreover, we introduce a concept for sharing clauses between the instances of parallel SAT-based PMC. Our experiments show that our new approach leads to a practically relevant speed-up of parameterised three-valued model checking.


Model Check Conjunctive Normal Form Kripke Structure Bound Model Check Conjunctive Normal Form Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ábrahám, E., Becker, B., Klaedtke, F., Steffen, M.: Optimizing bounded model checking for linear hybrid systems. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 396–412. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  2. 2.
    Ábrahám, E., Schubert, T., Becker, B., Fränzle, M., Herde, C.: Parallel SAT solving in bounded model checking. J. Logic. Comput. 21(1), 5–21 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  4. 4.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 185, pp. 457–481. IOS Press, Amsterdam (2009) Google Scholar
  5. 5.
    Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2009)Google Scholar
  6. 6.
    Böhm, M., Speckenmeyer, E.: A fast parallel SAT-solver - efficient workload balancing. Ann. Math. Artif. Intell. 17(2), 381–400 (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  8. 8.
    Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  9. 9.
    Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic model-checking. ACM Trans. Softw. Eng. Methodol. (TOSEM) 12(4), 371–408 (2003)CrossRefGoogle Scholar
  10. 10.
    Chechik, M., Gurfinkel, A., Devereux, B.: \(\chi \)Chek: a multi-valued model-checker. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 505–509. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  11. 11.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)CrossRefGoogle Scholar
  12. 12.
    Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informaticae 20(1–3), 113–131 (1994)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hamadi, Y., Jabbour, S., Sais, J.: Control-based clause sharing in parallel sat solving. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 245–267. Springer, Berlin Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability Boolean Model. Comput. 7, 59–64 (2010)Google Scholar
  15. 15.
    Lewis, M.D.T., Schubert, T., Becker, B.W.: Speedup techniques utilized in modern SAT solvers. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 437–443. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  16. 16.
    Schubert, T., Lewis, M., Becker, B.: Pamira - a parallel SAT solver with knowledge sharing. In: Sixth International Workshop on Microprocessor Test and Verification, 2005, MTV 2005, pp. 29–36. IEEE Computer Society (2005)Google Scholar
  17. 17.
    Schuele, T., Schneider, K.: Three-valued logic in bounded model checking. In: Proceedings of the 2nd ACM/IEEE International Conference on Formal Methods and Models for Co-Design, pp. 177–186. IEEE Computer Society (2005)Google Scholar
  18. 18.
    Shoham, S., Grumberg, O.: 3-valued abstraction: more precision at less cost. Inf. Comput. 206(11), 1313–1333 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Sinz, C., Blochinger, W., Küchlin, W.: PaSAT - parallel SAT-checking with lemma exchange: Implementation and applications. Electron. Notes Discrete Math. 9, 205–216 (2001)CrossRefGoogle Scholar
  20. 20.
    Strichman, O.: Accelerating bounded model checking of safety properties. Formal Methods Syst. Des. 24(1), 5–24 (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Timm, N.: Bounded model checking für partielle systeme. Masters thesis, University of Paderborn (2009)Google Scholar
  22. 22.
    Timm, N.: Three-valued abstraction and heuristic-guided refinement for verifying concurrent systems. Ph.D. thesis, University of Paderborn (2013)Google Scholar
  23. 23.
    Timm, N., Gruner, S.: Parameterisation of three-valued abstractions. In: Braga, C., Martí-Oliet, N. (eds.) SBMF 2014. LNCS, vol. 8941, pp. 162–178. Springer, Heidelberg (2015) Google Scholar
  24. 24.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Symbolic Computation, Springer, Berlin Heidelberg (1983)CrossRefGoogle Scholar
  25. 25.
    Wehrheim, H.: Bounded model checking for partial kripke structures. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 380–394. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  26. 26.
    Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: a framework for parallelized bounded model checking. In: Proceedings 8th International Workshop on Parallel and Distributed Methods in verifiCation, PDMC 2009, Eindhoven, The Netherlands, 4th November 2009, pp. 62–76 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations