Skip to main content

Automating the Development of Metabolic Network Models

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9308))

Included in the following conference series:

  • 944 Accesses

Abstract

Although substantial progress has been made in the automation of many areas of systems biology, from data processing and model building to experimentation, comparatively little work has been done on integrated systems that combine all of these aspects. This paper presents an active learning system, “Huginn”, that integrates experiment design and model revision in order to automate scientific reasoning about Metabolic Network Models. We have validated our approach in a simulated environment using substantial test cases derived from a state-of-the-art model of yeast metabolism. We demonstrate that Huginn can not only improve metabolic models, but that it is able to both solve a wider range of biochemical problems than previous methods, and to utilise a wider range of experiment types. Also, we show how design of extended crucial experiments can be automated using Abductive Logic Programming for the first time.

Huginn is an open-source software, available at: 

github.com/robaki/huginnCMSB2015.

All figures included in this paper are in public domain; files can be downloaded from: 

github.com/robaki/huginnCMSB2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    From the Norse mythology – one of two ravens scouting the world for Odin.

  2. 2.

    Tested using pair-wise comparison of improvement and then a binomial test.

  3. 3.

    Tested using paired, one-tailed t-test.

References

  1. Aung, H.W., Henry, S.A., Walker, L.P.: Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind. Biotechnol. 9(4), 215–228 (2013)

    Article  Google Scholar 

  2. Bechtel, W., Richardson, R.C.: Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. MIT Press, Cambridge (2010)

    Google Scholar 

  3. Collet, G., Eveillard, D., Gebser, M., Prigent, S., Schaub, T., Siegel, A., Thiele, S.: Extending the metabolic network of ectocarpus siliculosus using answer set programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 245–256. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Craver, C., Darden, L.: Discovering mechanisms in neurobiology. In: Machamer, P.K., et al. (eds.) Theory and Method in the Neurosciences, pp. 112–137. University of Pitt Press, Pittsburgh (2001)

    Google Scholar 

  5. Craver, C.F., Darden, L.: In Search of Mechanisms: Discoveries Across the Life Sciences. University of Chicago Press, Chicago (2013)

    Book  Google Scholar 

  6. Darden, L.: Reasoning in Biological Discoveries. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  7. Džeroski, S., Todorovski, L.: Discovering dynamics: from inductive logic programming to machine discovery. J. Intell. Inf. Syst. 4(1), 89–108 (1995)

    Article  Google Scholar 

  8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Gebser, M., Schaub, T., Thiele, S.: Gringo: a new grounder for answer set programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 266–271. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. King, R., Rowland, J., Oliver, S., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L., et al.: The automation of science. Science 324(5923), 85–89 (2009)

    Article  Google Scholar 

  11. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427(6971), 247–252 (2004)

    Article  Google Scholar 

  12. Langley, P.: Scientific Discovery: Computational Explorations of the Creative Processes. MIT Press, Cambridge (1987)

    Google Scholar 

  13. Langley, P.: Lessons for the computational discovery of scientific knowledge. In: Proceedings of First International Workshop on Data Mining Lessons Learned, pp. 9–12. University of New South Wales (2002)

    Google Scholar 

  14. Machamer, P., Darden, L., Craver, C.F.: Thinking about mechanisms. Philos. Sci. 67, 1–25 (2000)

    Article  MathSciNet  Google Scholar 

  15. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Logic 7(3), 329–340 (2009)

    Article  MATH  Google Scholar 

  16. Ray, O., Whelan, K., King, R.: Automatic revision of metabolic networks through logical analysis of experimental data. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 194–201. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  18. Thagard, P.: Computational Philosophy of Science. MIT Press, Cambridge (1993)

    Google Scholar 

  19. Todorovski, L., Bridewell, W., Shiran, O., Langley, P.: Inducing hierarchical process models in dynamic domains. In: Proceedings of the National Conference on Artificial Intelligence, vol. 20, p. 892. AAAI Press, MIT Press, Menlo Park, Cambridge (1999, 2005)

    Google Scholar 

  20. Valdés-Pérez, R.E.: Machine discovery in chemistry: new results. Artif. Intell. 74(1), 191–201 (1995)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by an EPSRC-EU Doctoral Training Award and the Faculty Engineering and Physical Sciences of the University of Manchester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Rozanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rozanski, R., Bragaglia, S., Ray, O., King, R. (2015). Automating the Development of Metabolic Network Models. In: Roux, O., Bourdon, J. (eds) Computational Methods in Systems Biology. CMSB 2015. Lecture Notes in Computer Science(), vol 9308. Springer, Cham. https://doi.org/10.1007/978-3-319-23401-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23401-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23400-7

  • Online ISBN: 978-3-319-23401-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics