Skip to main content

Evolving Protection Measures for Lava Risk Management Decision Making

  • Conference paper
  • First Online:
Book cover Computational Intelligence (IJCCI 2013)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 613))

Included in the following conference series:

  • 686 Accesses

Abstract

Many volcanic areas around the World are densely populated and urbanized. For instance , Mount Etna (Italy) is home to approximately one million people, despite being the most active volcano in Europe. Mapping both the physical threat and the exposure and vulnerability of people and material properties to volcanic hazards can help local authorities to guide decisions about where to locate a priori critical infrastructures (e.g. hospitals, power plants, railroads, etc.) and human settlements and to devise for existing locations and facilities appropriate mitigation measures. We here present the application of Parallel Genetic Algorithms for optimizing earth barriers construction by morphological evolution, to divert a case study lava flow that is simulated by the numerical Cellular Automata model Sciara-fv2 at Mt Etna volcano (Sicily, Italy). The devised area regards Rifugio Sapienza, a touristic facility located near the summit of the volcano, where the methodology was applied for the optimization of the position, orientation and extension of an earth barrier built to protect the zone. The study has produced extremely positive results, providing insights and scenarios for the area representing, to our knowledge, the first application of morphological evolution for lava flow mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behncke, B., Neri, M.: The July-August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 65(7), 461–476 (2003)

    Article  Google Scholar 

  2. Miyamoto, H., Sasaki, S.: Simulating lava flows by an improved cellular automata method. Comput. Geosci. 23, 283–292 (1997)

    Article  Google Scholar 

  3. Avolio, M.V., Crisci, G.M., Di Gregorio, S., Rongo, R., Spataro, W., D’Ambrosio, D.: Pyroclastic flows modelling using Cellular Automata. Comput. Geosci. 32, 897–911 (2006)

    Article  Google Scholar 

  4. Del Negro, C., Fortuna, L., Herault, A., Vicari, A.: Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model. Bull. Volcanol. 70(7), 805–812 (2008)

    Article  Google Scholar 

  5. Barberi, F., Brondi, F., Carapezza, M., Cavarra, L., Murgia, C.: Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. J. Volcanol. Geoth. Res. 123, 231–243 (2003)

    Article  Google Scholar 

  6. Colombrita, R.: Methodology for the construction of earth barriers to divert lava flows: the Mt. Etna 1983 eruption. Bull. Volcanol. 47(4), 1009–1038 (1984)

    Article  Google Scholar 

  7. Barberi, F., Carapezza, M., Valenza, M., Villari, L.: The control of lava flow during the 1991–1992 eruption of Mt. Etna. J. Volcanol. Geoth. Res. 56, 1–34 (1993)

    Article  Google Scholar 

  8. Bentley, P.: An introduction to evolutionary design by computers. In: Bentley, P.J. (ed.) Evolutionary Design by Computers, ch. 1, pp. 1–73. Morgan Kaufman, San Francisco (1999)

    Google Scholar 

  9. Sims, K.: Evolving 3d morphology and behavior by competition. In: Proceedings of Artificial Life IV, pp. 28–39. MIT Press (1994)

    Google Scholar 

  10. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. In: Proceedings of the National Academy of Sciences, vol. 108, pp. 1234–1239 (2011)

    Article  Google Scholar 

  11. Kicinger, R., Arciszewski, T., Jong, K.D.: Evolutionary computation and structural design: a survey of the state-of-the-art. Comput. Struct. 83, 1943–1978 (2005)

    Article  Google Scholar 

  12. Spataro, W., Avolio, M.V., Lupiano, V., Trunfio, G.A., Rongo, R., D’Ambrosio, D.: The latest release of the lava flows simulation model SCIARA: First application to Mt Etna (Italy) and solution of the anisotropic flow direction problem on an ideal surface. In: Proceedings of International Conference on Computational Science, vol. 1, pp. 17–26. Procedia Computer Science (2010)

    Article  Google Scholar 

  13. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)

    Google Scholar 

  14. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  15. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wildfire spread through cellular automata. ACM Trans. Model. Comput. Simul. 22, 6:1–6:26 (2011)

    Article  Google Scholar 

  16. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)

    Book  Google Scholar 

  17. Crisci, G.M., Gregorio, S.D., Rongo, R., Spataro, W.: Pyr: a cellular automata model for pyroclastic flows and application to the 1991 mt. pinatubo eruption. Future Gen. Comput. Syst. 21(7), 1019–1032 (2005)

    Article  Google Scholar 

  18. Filippone, G., D’Ambrosio Spataro, D., Marocco, D.: An interactive visualization system for lava flows cellular automata simulations using CUDA. In: Poster Presented at GPU Technology Conference. San Jose, California (2013)

    Google Scholar 

  19. Barberi, F., Carapezza, M.L.: Mt. Etna: Volcano Laboratory, ch. The Control of Lava Flows at Mt. Etna, pp. 357–369. American Geophysical Union, Washington (2004)

    Google Scholar 

  20. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press, Cambridge (1992)

    Book  Google Scholar 

  21. Goncalves, J.F., Resende, M.G.: Biased random-key genetic algorithms forcombinatorial optimization. J. Heuristics 17(5), 487–525 (2011)

    Article  Google Scholar 

  22. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Syst. pp. 495–502 (1987)

    Google Scholar 

  23. Nolfi, S., Marocco, D.: Evolving robots able to integrate sensory-motor information over time. Theory Biosci. 120, 287–310 (2001)

    Article  Google Scholar 

  24. ElSayed, A., Kongar, E., Gupta, S., Sobh, T.: A robotic-driven disassembly sequence generator for end-of-life electronic products. J. Intell. Rob. Syst. 68(1), 43–52 (2012)

    Article  Google Scholar 

  25. Piwonska, A., Seredynski, F., Szaban, M.: Learning cellular automata rules for binary classification problem. J. Supercomput. 63(3), 800–815 (2013)

    Article  Google Scholar 

  26. Di Gregorio, S., Serra, R., Villani, M.: Applying cellular automata to complex environmental problems: the simulation of the bioremediation of contaminated soils. Theoret. Comput. Sci. 217(1), 131–156 (1999)

    Article  MathSciNet  Google Scholar 

  27. Iovine, G., D’Ambrosio, D., Di Gregorio, S.: Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects, Geomorphology, vol. 66, no.14, pp. 287–303 (2005)

    Google Scholar 

  28. Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt Etna volcano. Fundam. Inf. 87, 247–267 (2008)

    Google Scholar 

  29. D’Ambrosio, D., Rongo, R., Spataro, W., Trunfio, G.A.: Meta-model assisted evolutionary optimization of cellular automata: an application to the sciara model. In: Proceedings of the 9th International Conference on Parallel Processing and Applied Mathematics - Volume Part II, PPAM’11, pp. 533–542. Springer, Berlin (2012)

    Chapter  Google Scholar 

  30. D’Ambrosio, D., Rongo, R., Spataro, W., Trunfio, G.: Optimizing Cellular Automata through a Meta-model Assisted Memetic Algorithm. In: Proceedings of Parallel Problem Solving from Nature - PPSN XII, Lecture Notes in Computer Science, vol. 7492, pp. 317–326. Springer, Berlin (2012)

    Google Scholar 

  31. Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)

    Google Scholar 

  32. Mitchell, M.: An introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  33. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)

    Article  Google Scholar 

  34. Filippone, G., Spataro, W., Spingola, G., D’Ambrosio, D., Rongo, R., Perna, G., Di Gregorio, S.: GPGPU programming and cellular automata: Implementation of the SCIARA lava flow simulation code. In: 23rd European Modeling and simulation Symposium (WMSS), pp. 12–14. Rome, September 2011

    Google Scholar 

  35. Di Gregorio, S., Filippone, G., Spataro, W., Trunfio, G.A.: Accelerating wildfire susceptibility mapping through GPGPU. J. Parallel Distrib. Comput. 73(8), 1183–1194 (2013)

    Article  Google Scholar 

  36. D’Ambrosio, D., Filippone, G., Marocco, D., Rongo, R., Spataro, W.: Efficient application of gpgpu for lava flow hazard mapping. J. Supercomput. 65(2), 630–644 (2013)

    Article  Google Scholar 

  37. D’Ambrosio, D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.A.: Cellular automata and GPGPU: an application to lava flow modeling. Int. J. Grid High Perform. Comput. 4, 30–47 (2012)

    Article  Google Scholar 

  38. NVIDIA Corporation, CUDA C Best Practices Guide. NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara 95050, USA, 5.0 ed. (2012)

    Google Scholar 

  39. Fujita, E., Hidaka, M., Goto, A., Umino, S.: Simulations of measures to control lava flows. Bulletin of Volcanology 71, 401–408 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the support of NVIDIA Corporation for this research. The work was partially funded by the European Commission European Social Fund (ESF) and by the Regione Calabria (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Filippone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Filippone, G., D’Ambrosio, D., Marocco, D., Spataro, W. (2016). Evolving Protection Measures for Lava Risk Management Decision Making. In: Madani, K., Dourado, A., Rosa, A., Filipe, J., Kacprzyk, J. (eds) Computational Intelligence. IJCCI 2013. Studies in Computational Intelligence, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-23392-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23392-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23391-8

  • Online ISBN: 978-3-319-23392-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics