Advertisement

Mapping Cortical Function with Event-Related Electrocorticography

  • Vernon L. TowleEmail author
  • Zhongtian Dai
  • Weili Zheng
  • Naoum P. Issa

Abstract

Direct cortical stimulation is the current standard for mapping basic motor and sensory function in the surgical setting, and is commonly used to confirm noninvasive functional mapping techniques, such as functional MRI, PET, MEG and transcranial magnetic stimulation studies. This chapter reviews the recent proliferation of event-induced high-frequency (30-250 Hz) electrocorticographic gamma mapping studies. Such studies have expanded the scope of cortical mapping to expressive and receptive speech processing, memory storage and retrieval, and other sensory and motor processes. Such maps can be registered and displayed with MR images and even directly on cortex. Progress toward passively mapping various cognitive and behavioral states outside of the hospital setting using chronically indwelling subdural electrodes that communicate without cables through telemetry is reviewed. This technique still needs validation with clinically accepted functional mapping tests, and will likely soon join the physician’s armamentarium of accepted functional mapping techniques.

Keywords

Transcranial Magnetic Stimulation Functional Mapping Gamma Activity Uncinate Fasciculus Primary Auditory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berger MS, Ghatan S, Haglund MM, Dobbins J, Ojemann GA. Low-grade gliomas associated with intractable epilepsy: seizure outcome utilizing electrocorticography during tumor resection. J Neurosurg. 1993;79:62–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Engel AK, Moll CK, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci. 2005;6(1):35–47.CrossRefPubMedGoogle Scholar
  3. 3.
    Rosenbaum TJ, Laxer KD, Vessely M, Smith WB. Subdural electrodes for seizure focus localization. Neurosurgery. 1986;19:73–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Spencer SS, Spencer DD, Williamson PD, Mattson R. Combined depth and subdural electrode investigation in uncontrolled epilepsy. Neurology. 1990;40:74–9.CrossRefPubMedGoogle Scholar
  5. 5.
    van Veelen CW, Debets RM, van Huffelen AC, van Emde BW, Binnie CD, Storm van Leeuwen W, Velis DN, van Dieren A. Combined use of subdural and intracerebral electrodes in preoperative evaluation of epilepsy. Neurosurgery. 1990;26:3–101.Google Scholar
  6. 6.
    Foerster O. The cerebral cortex of man. Lancet. 1931;109:309–12.Google Scholar
  7. 7.
    Penfield W. The cerebral cortex in man. I. The cerebral cortex and consciousness. Arch Neurol Psychiatry. 1938;40:417–42.CrossRefGoogle Scholar
  8. 8.
    Penfield W, Roberts L. Speech and brain-mechanisms. Princeton, NJ: Princeton University Press; 1959.Google Scholar
  9. 9.
    Lesser R, Gordon B, Uematsu S. Electrical stimulation and language. J Clin Neurophysiol. 1994;11:191–204.CrossRefPubMedGoogle Scholar
  10. 10.
    Hoppe C, Elger C, Helmstaedter C. Long-term memory impairment in patients with focal epilepsy. Epilepsia. 2007;48 Suppl 9:26–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Tan TC, Black PM. The contributions of Otfrid Foerster (1873-1941) to neurology and neurosurgery. Neurosurgery. 2001;49:1231–6.PubMedGoogle Scholar
  12. 12.
    Spencer SS, Sperling MR, Shewmon DA. Intracranial electrodes. In: Engel Jr J, Pedley TA, editors. Epilepsy: a comprehensive textbook, vol. 2. Philadelphia: Lippincott-Raven; 1997. p. 1719–47.Google Scholar
  13. 13.
    Arroyo S, Lesser RP, Awad IA, Goldring S, Sutherling WW, Resnick TJ. Subdural and epidural grids and strips. In: Engel Jr J, editor. Surgical treatment of the epilepsies. 2nd ed. New York: Raven Press; 1993. p. 377–86.Google Scholar
  14. 14.
    Wu S, Veedu HPK, Lhatoo SD, Koubeissi M, Miller J, Lüders HO. Role of ictal baseline shifts and ictal high-frequency oscillations in stereo-electroencephalography analysis of mesial temporal lobe seizures. Epilepsia. 2014;55(5):690–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Berger H. 1929. As described by M.A.B. Brazier, A history of the electrical activity of the brain; the first half-century. New York: Macmillan; 1961.Google Scholar
  16. 16.
    Berger H. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkr 1932;97:6–26 [Translated by P. Gloor. On the electroencephalogram of man. Electroenceph Clin Neurophysiol 1969;Suppl 28:133–50].Google Scholar
  17. 17.
    Chatrian GE, Petersen MC, Lazarte JA. The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalogr Clin Neurophysiol. 1959;11:497–510.CrossRefPubMedGoogle Scholar
  18. 18.
    Jasper H, Penfield W. Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Psychiat Zeitschrift Neurol. 1949;183:163–74.Google Scholar
  19. 19.
    Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD. Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol. 1989;62:694–710.PubMedGoogle Scholar
  20. 20.
    Towle VL, Khorasani L, Uftring S, Pelizzari C, Spire ERK, J-P HK, Chu D, Scherg M. Noninvasive identification of the human central sulcus: a comparison of gyral morphology, functional MRI dipole localization and direct cortical mapping. Neuroimage. 2003;19:684–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee YS, Lueders H, Dinner DS, Lesser RP, Hahn J, Klem G. Recordings of auditory evoked potentials in man using chronic subdural electrodes. Brain. 1984;107:115–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Freeman WJ. Mass action in the nervous system. New York: Academic Press; 1975.Google Scholar
  23. 23.
    Caton R. The electric currents of the brain. Br Med J. 1875;II:278.Google Scholar
  24. 24.
    Lachaux JP, Axmacher N, Mormann F, Halgren E, Crone NE. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog Neurobiol. 2012;98(3):279–301.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain. 1998;121:2271–99.CrossRefPubMedGoogle Scholar
  26. 26.
    Crone NE, Miglioretti DL, Gordon B, Lesser RP. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain. 1998;121:2301–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Crone NE, Boatman D, Gordon B, Hao L. Induced electrocorticographic gamma activity during auditory perception. (Brazier winning article). Clin Neurophysiol. 2001;112:565–82.CrossRefPubMedGoogle Scholar
  28. 28.
    Crone NE, Hao L, Hart Jr J, Boatman D, Lesser RP, Irizarry R, Gordon B. Electrocorticographic gamma activity during word production in spoken and sign language. Neurology. 2001;57(11):2045–53.CrossRefPubMedGoogle Scholar
  29. 29.
    Aoki F, Fetz EE, Shupe I, Lettich E, Ojemann GA. Changes in power and coherence of brain activity in human sensorimotor cortex during performance of visuomotor tasks. BioSystems. 2001;63:89–99.CrossRefPubMedGoogle Scholar
  30. 30.
    Brunner P, Ritaccio AL, Lynch TM, Emrich JF, Wilson JAQ, Williams JC, Aarnoutse EJ, Ramsey NF, Leuthardt EC, Bischof H, Schalk G. A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav. 2009;15:278–86.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Leuthardt EC, Miller K, Anderson NR, Schalk G, Dowling J, Miller J, et al. Electrocorticographic frequency alteration mapping: a clinical technique for mapping the motor cortex. Neurosurgery. 2007;60:260–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Miller KJ, Leuthardt EC, Schalk G, Rao RPN, Anderson NR, Moran DW, Miller JW, Ojemann JG. Spectral changes in cortical surface potentials during motor movement. J Neurosci. 2007;27(9):2424–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Qian T, Zhou W, Ling Z, Gao S, Liu H, Hong B. Fast presurgical functional mapping using task-related intracranial high gamma activity. J Neurosurg. 2013;119(1):26–36.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Babajani-Feremi A, Rezaie R, Narayana S, Choudhri AF, Fulton SP, Boop FA, Wheless JW, Papanicolaou AC. Variation in the topography of the speech production cortex verified by cortical stimulation and high gamma activity. NeuroReport. 2014;25(18):1411–7.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kojima K, Brown EC, Rothermel R, Carlson A, Fuerst D, Matsuzaki N, Shah A, Atkinson M, Basha M, Mittal S, Sood S, Asano E. Clinical significance and developmental changes of auditory-language-related gamma activity. Clin Neurophysiol. 2013;124(5):857–69.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Pei X, Leuthardt EC, Gaona CM, Brunner P, Wolpaw JR, Schalk G. Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. Neuroimage. 2011;54(4):2960–72.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Kunii N, Kamada K, Ota T, Kawai K, Saito N. Characteristic profiles of high gamma activity and blood oxygenation level-dependent responses in various language areas. Neuroimage. 2013;65:242–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Towle VL, Yoon H-A, Castelle MC, Edgar JC, Biassou NM, Frim DM, Spire J-P, Kohrman MH. ECoG gamma activity during a language task: differentiating expressive and receptive speech areas. Brain. 2008;131:2013–27.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Asano E, Nishida M, Fukuda M, Rothermel R, Juhaz C, Sood S. Differential visually-induced gamma-oscillations in human cerebral cortex. Neuroimage. 2009;45:477–89.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Cervenka MC, Corines J, Boatman-Reich DF, Eloyan A, Sheng X, Franaszczuk PJ, Crone NE. Electrocorticographic functional mapping identifies human cortex critical for auditory and visual naming. Neuroimage. 2013;69:267–76.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Edwards E, Nagarajan SS, Dalal SS, Canolty RT, Kirsch HE, Barbaro NM, Knight RT. Spatiotemporal imaging of cortical activation during verb generation and picture naming. Neuroimage. 2010;50(1):291–301.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Hart Jr J, Crone NE, Lesser RP, Sieracki J, Miglioretti DL, Hall C, Sherman D, Gordon B. Temporal dynamics of verbal object comprehension. Proc Natl Acad Sci. 1998;95:6498–503.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Tanji K, Suzuki K, Delorme A, Shamoto H, Nakasato N. High-frequency γ-band activity in the basal temporal cortex during picture-naming and lexical-decision tasks. J Neurosci. 2005;25(13):3287–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Wu H, Nagasawa T, Brown EC, Juhasz C, Rothermel R, Hoechstetter K, Shah A, Mittal S, Fuerst D, Sood S, Asano E. Gamma-oscillations modulated by picture naming and word reading: intracranial recording in epileptic patients. Clin Neurophysiol. 2011;122:1929–42.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Tallon-Baudry C, Bertrand O, Fischer C. Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J. Neuroscience, 2001, RC177, 1–5.Google Scholar
  46. 46.
    Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR. Theta and gamma oscillations during encoding predict subsequent recall. J Neurosci. 2003;23(34):10809–14.PubMedGoogle Scholar
  47. 47.
    Axmacher N, Schmitz DP, Wagner T, Elger CE, Fell J. Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory: a combined intracranial EEG and functional magnetic resonance imaging study. J Neurosci. 2008;28(29):7304–12.CrossRefPubMedGoogle Scholar
  48. 48.
    Flinker A, Chang EF, Barbaro NM, Berger MS, Knight RT. Sub-centimeter language organization in the human temporal lobe. Brain Lang. 2011;117(3):103–9.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    DeWitt I, Rauschecker JP. Wernicke’s area revisited: parallel streams and word processing. Brain Lang. 2013;127(2):181–91.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Wise RJS, Scott SK, Blank SC, Mummery CJ, Murphy K, Warburton EA. Separate neural subsystems within “Wernicke’s area”. Brain. 2001;124:83–95.CrossRefPubMedGoogle Scholar
  51. 51.
    Sinai A, Bowers CW, Crainiceanu CM, Boatman D, Gordon B, Lesser RP, Lenz FA, Crone NE. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain. 2005;128:1556–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Cervenka MC, Franaszczuk PJ, Crone NE, Hong B, Caffo BS, Bhatt P, Lenz FA, Boatman-Reich D. Reliability of early cortical auditory gamma-band responses. Clin Neurophysiol. 2013;124(1):70–82.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8:393–402.CrossRefPubMedGoogle Scholar
  54. 54.
    Rauschecker JP. Ventral and dorsal streams in the evolution of speech and language. Front Evol Neurosci. 2012;4:1–4.CrossRefGoogle Scholar
  55. 55.
    Bauer PR, Vansteensel MJ, Bleichner MG, Hermes D, Ferrier CH, Aarnoutse EJ, Ramsey NF. Mismatch between electrocortical stimulation and electrocorticography frequency mapping of language. Brain Stimul. 2013;6:524–31.CrossRefPubMedGoogle Scholar
  56. 56.
    Hughlings Jackson J. On the nature of the duality of the brain. Medical Press and Circular; 1874. p. 1, 19, 41, 63.Google Scholar
  57. 57.
    Kojima K, Brown EC, Matsuzaki N, Rothermel R, Fuerst D, Shah A, Mittal S, Sood S, Asano E. Gamma activity modulated by picture and auditory naming tasks: intracranial recording in patients with focal epilepsy. Clin Neurophysiol. 2013;124(9):1737–44.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Towle VL, Syed I, Berger C, Grzesczcuk R, Milton J, Erickson RK, Cogen P, Berkson EM, Spire J-P. Identification of the sensory/motor area and pathologic regions using ECoG coherence. Electroencephalogr Clin Neurophysiol. 1998;106:30–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Towle VL, Carder RK, Khorasani L, Lindberg D. Electrocorticographic coherence patterns. J Clin Neurophysiol. 1999;16:528–47.CrossRefPubMedGoogle Scholar
  60. 60.
    Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–8.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Enatsu R, Kubota Y, Kakisaka Y, Bulacio J, Piao Z, O’Connor T, Horning K, Mosher J, Burgess RC, Bingaman W, Nair DR. Reorganization of posterior language area in temporal lobe epilepsy: a cortico-cortical evoked potential study. Epilepsy Res. 2013;103(1):73–82.CrossRefPubMedGoogle Scholar
  62. 62.
    Korzeniewska A, Franaszczuk PJ, Crainiceanu CM, Kuś R, Crone NE. Dynamics of large-scale cortical interactions at high gamma frequencies during word production: event related causality (ERC) analysis of human electrocorticography (ECoG). Neuroimage. 2011;56(4):2218–37.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Duffau H, Thiebaut de Schotten M, Mandonnet E. White matter functional connectivity as an additional landmark for dominant temporal lobectomy. J Neurol Neurosurg Psychiatry. 2008;79:492–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Glasser MF, Rilling JK. DTI tractography of the human brain’s language pathways. Cereb Cortex. 2008;18(11):2471–82.CrossRefPubMedGoogle Scholar
  65. 65.
    Tertel K, Tandon N, Elmore TM. Probing brain connectivity by combined analysis of diffusion MRI tractography and electrocorticography. Comput Biol Med. 2011;41(12):1092–9.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Schalk G, Leuthardt EC, Brunner P, Ojemann JG, Gerhardt LA, Wolpaw JR. Real-time detection of event-related brain activity. Neuroimage. 2008;43:245–9.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004;51:1034–43.CrossRefPubMedGoogle Scholar
  68. 68.
    Derix J, Iljina O, Schulze-Bonhage A, Aertsen A, Ball T. “Doctor” or “darling”? Decoding the communication partner from ECoG of the anterior temporal lobe during non-experimental, real-life social interaction. Front Hum Neurosci. 2012;6:251.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Miller KJ, DenNijs M, Shenoy P, Miller JW, Rao RP, Ojemann JG. Real-time functional brain mapping using electrocorticography. NeuroImage. 2007;37:504–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Roland J, Brunner P, Johnston J, Shalk G, Leuthardt EC. Passive real-time identification of speech and motor cortex during an awake craniotomy. Epilepsy Behav. 2010;18:123–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Ruescher J, Iljina O, Altenmuller D-M, Aertsen A, Schulze-Bonhage A, Ball T. Somatotopic mapping of natural upper- and lower-extremity movements and speech production with high gamma electrocorticography. Neuroimage. 2013;81:164–77.CrossRefPubMedGoogle Scholar
  72. 72.
    Vansteensel MJ, Bleichner MG, Dintzner LT, Aarnoutse EJ, Leijten FS, Hermes D, Ramsey NF. Task-free electrocorticography frequency mapping of the motor cortex. Clin Neurophysiol. 2013;124:1169–74.CrossRefPubMedGoogle Scholar
  73. 73.
    Killingsworth MA, Gilbert DT. A wandering mind is an unhappy mind. Science. 2010;330:932.CrossRefPubMedGoogle Scholar
  74. 74.
    Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering minds: the default network and stimulus-independent thought. Science. 2007;315:393–5.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Aggarwal JK, Ryoo MS. Human activity analysis: a review. ACM Comput Surv. 2011;2011:43(3).Google Scholar
  76. 76.
    Bretzner L, Laptev I, Lindeberg T. Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering. Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition; 2002 May; Washington D.C. p. 423–8.Google Scholar
  77. 77.
    Hamburger MJ. Cortical language mapping in epilepsy: a critical review. Neuropsychol Rev. 2007;17:477–89.CrossRefGoogle Scholar
  78. 78.
    Berger H. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkr 1929;87:527–70 [Translated by P. Gloor. On the electroencephalogram of man. Electroenceph Clin Neurophysiol 1969; Suppl 28:37–3].Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vernon L. Towle
    • 1
    Email author
  • Zhongtian Dai
    • 1
  • Weili Zheng
    • 1
  • Naoum P. Issa
    • 1
  1. 1.Department of NeurologyUniversity of Chicago Medical SchoolChicagoUSA

Personalised recommendations