Skip to main content

A Wayfinding Grammar Based on Reference System Transformations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9368)

Abstract

Wayfinding models can be helpful in describing, understanding, and technologically supporting the processes involved in navigation. However, current models either lack a high degree of formalization, or they are not holistic and perceptually grounded, which impedes their use for cognitive engineering. In this paper, we propose a novel formalism that covers the core wayfinding processes, yet is modular in nature by allowing for open slots for those spatial cognitive processes that are modifiable, or not yet well understood. Our model is based on a formal grammar grounded in spatial reference systems and is both interpretable in terms of observable behavior and executable to allow for empirical testing as well as the simulation of wayfinding.

Keywords

  • Wayfinding
  • Navigation
  • Spatial cognitive processes
  • Formal grammar
  • Reference systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23374-1_21
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-23374-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    These include: cognitive reference frames, mental survey representations as well as geographic reference systems (cf. [36]).

  2. 2.

    Note that we use this term in an intermodal sense, i.e., not restricted to vision and thus integrating different modalities of perception.

  3. 3.

    Note that survey simulation was deactivated with rule (8) by \(f_{\textit{Instr}}\) in Table 2.

  4. 4.

    In principle, route knowledge may also be removed (forgotten) or overwritten by new experience or simulations.

  5. 5.

    A complex sign can add more than one edge to \(Acc\).

References

  1. Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: a theory of higher level cognition and its relation to visual attention. Hum.-Comput. Interact. 12(4), 439–462 (1997)

    CrossRef  Google Scholar 

  2. Arthur, P., Passini, R.: How the wayfinding process works. In: Wayfinding: People, Signs, and Architecture, pp. 26–39. McGraw-Hill, New York (1992)

    Google Scholar 

  3. Downs, R.M., Stea, D.: The world in the head. In: Maps in Minds: Reflections on Cognitive Mapping, chap. 4, pp. 125–135. Harper & Row Series in Geography, Harper & Row (1977)

    Google Scholar 

  4. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13, 94–102 (1970)

    CrossRef  MATH  Google Scholar 

  5. Frank, A.U.: Formal models for cognition - taxonomy of spatial location description and frames of reference. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 293–312. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  6. Giannopoulos, I., Kiefer, P., Raubal, M., Richter, K.-F., Thrash, T.: Wayfinding decision situations: a conceptual model and evaluation. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 221–234. Springer, Heidelberg (2014)

    Google Scholar 

  7. Golledge, R.G.: Place recognition and wayfinding: making sense of space. Geoforum 23, 199–214 (1992)

    CrossRef  Google Scholar 

  8. Golledge, R.G.: Human wayfinding and cognitive maps. In: Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, chap. 1, pp. 5–45. The Johns Hopkins University Press (1999)

    Google Scholar 

  9. Gopal, S., Klatzky, R.L., Smith, T.R.: Navigator: a psychologically based model of environmental learning through navigation. J. Environ. Psychol. 9(4), 309–331 (1989)

    CrossRef  Google Scholar 

  10. Hahn, J., Weiser, P.: A quantum formalization for communication coordination problems. In: Atmanspacher, H., Bergomi, C., Filk, T., Kitto, K. (eds.) QI 2014. LNCS, vol. 8951, pp. 177–188. Springer, Heidelberg (2015)

    CrossRef  Google Scholar 

  11. Haken, H., Portugali, J.: Synergetics, inter-representation networks and cognitive maps. In: The Construction of Cognitive Maps, pp. 45–67. Springer (1996)

    Google Scholar 

  12. Hutchins, E.: Distributed cognition. In: International Encyclopedia of the Social and Behavioral Sciences. Elsevier Science (2000)

    Google Scholar 

  13. Hutchins, E.L.: Cognition in the Wild, 2nd edn. MIT press, Cambridge (1996)

    Google Scholar 

  14. Kesner, R.P., Creem-Regehr, S.H.: Parietal contributions to spatial cognition. In: Handbook of Spatial Cognition, pp. 35–63. American Psychological Association (2013)

    Google Scholar 

  15. Kiefer, P.: Spatially constrained grammars for mobile intention recognition. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 361–377. Springer, Heidelberg (2008)

    Google Scholar 

  16. Kiefer, P.: Mobile Intention Recognition. Springer, New York (2011)

    MATH  Google Scholar 

  17. Kiefer, P., Giannopoulos, I.: Gaze map matching: mapping eye tracking data to geographic vector features. In: Proceedings of the 20th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 359–368. ACM, New York (2012)

    Google Scholar 

  18. Kiefer, P., Giannopoulos, I., Raubal, M.: Using eye movements to recognize activities on cartographic maps. In: Proceedings of the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 498–501. ACM, New York (2013)

    Google Scholar 

  19. Kiefer, P., Giannopoulos, I., Raubal, M.: Where am I? investigating map matching during self-localization with mobile eye tracking in an urban environment. Trans. GIS 18(5), 660–686 (2014)

    CrossRef  Google Scholar 

  20. Kitchin, R.M.: Cognitive maps: what are they and why study them? J. Environ. Psychol. 14(1), 1–19 (1994)

    CrossRef  Google Scholar 

  21. Klippel, A., Tappe, H., Kulik, L., Lee, P.U.: Wayfinding choremes - a language for modeling conceptual route knowledge. J. Vis. Lang. Comput. 16(4), 311–329 (2005)

    CrossRef  Google Scholar 

  22. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theor. 2, 127–145 (1968)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Kuhn, W.: Semantic reference systems. Int. J. Geogr. Inf. Sci. 17(5), 405–409 (2003)

    CrossRef  Google Scholar 

  24. Kuipers, B.: Modeling spatial knowledge. Cogn. Sci. 2(2), 129–153 (1978)

    CrossRef  Google Scholar 

  25. Leiser, D., Zilbershatz, A.: The traveller: a computational model of spatial network learning. Environ. Behav. 21(4), 435–463 (1989)

    CrossRef  Google Scholar 

  26. Levinson, S.C.: Space in Language and Cognition: Explorations in Cognitive Diversity, vol. 5. Cambridge University Press, Cambridge (2003)

    CrossRef  Google Scholar 

  27. Logan, G.D., Sadler, D.D.: A computational analysis of the apprehension of spatial relations. In: Language and Space. Language, Speech, and Communication, pp. 493–529. MIT Press (1996)

    Google Scholar 

  28. Lohmann, K., Eschenbach, C., Habel, C.: Linking spatial haptic perception to linguistic representations: assisting utterances for tactile-map explorations. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 328–349. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  29. Loomis, J.M., Klatzky, R.L., Giudice, N.A.: Representing 3D space in working memory: spatial images from vision, hearing, touch, and language. In: Multisensory Imagery, pp. 131–155. Springer (2013)

    Google Scholar 

  30. MacEachren, A.M.: How Maps Work: Representation, Visualization, and Design. Guilford Press, New York (1995)

    Google Scholar 

  31. McNamara, T.P.: Spatial memory: properties and organization. In: Handbook of Spatial Cognition, pp. 173–190. American Psychological Association (2013)

    Google Scholar 

  32. Montello, D.R.: Navigation. In: Cambridge Handbook of Visuospatial Thinking, pp. 257–294. Cambridge University Press (2005)

    Google Scholar 

  33. Montello, D.R.: Scale and multiple psychologies of space. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 312–321. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  34. Passini, R.: Wayfinding: a conceptual framework. Urban Ecol. 5(1), 17–31 (1981)

    CrossRef  Google Scholar 

  35. Raubal, M., Worboys, M.F.: A formal model of the process of wayfinding in built environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 381–399. Springer, Heidelberg (1999)

    Google Scholar 

  36. Richter, K.F., Winter, S.: Landmarks. Springer, Switzerland (2014)

    CrossRef  Google Scholar 

  37. Scheider, S.: Grounding Geographic Information in Perceptual Operations. Frontiers in Artifical Intelligence and Applications, vol. 244. IOS Press, Amsterdam (2012)

    Google Scholar 

  38. Schlieder, C.: Representing the meaning of spatial behavior by spatially grounded intentional systems. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 30–44. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  39. Shelton, A.L., McNamara, T.P.: Systems of spatial reference in human memory. Cogn. Psychol. 43(4), 274–310 (2001)

    CrossRef  Google Scholar 

  40. Simmering, V.R., Schutte, A.R., Spencer, J.P.: Generalizing the dynamic field theory of spatial cognition across real and developmental time scales. Brain Res. 1202, 68–86 (2008)

    CrossRef  Google Scholar 

  41. Smith, T.R., Pellegrino, J.W., Golledge, R.G.: Computational process modeling of spatial cognition and behavior. Geogr. Anal. 14(4), 305–325 (1982)

    CrossRef  Google Scholar 

  42. Tversky, B.: Cognitive maps, cognitive collages, and spatial mental models. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 14–24. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  43. Weiser, P.: A Pragmatic Communication Model for Way-finding Instructions. Ph.D. thesis, Vienna University of Technology. Department of Geodesy and Geoinformation. Research Group Geoinformation (2014)

    Google Scholar 

  44. Weiser, P., Frank, A.U.: Cognitive transactions – a communication model. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 129–148. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  45. Wiener, J.M., Büchner, S.J., Hölscher, C.: Taxonomy of human wayfinding tasks: a knowledge-based approach. Spat. Cogn. Comput. 9(2), 152–165 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kiefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kiefer, P., Scheider, S., Giannopoulos, I., Weiser, P. (2015). A Wayfinding Grammar Based on Reference System Transformations. In: Fabrikant, S., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds) Spatial Information Theory. COSIT 2015. Lecture Notes in Computer Science(), vol 9368. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23374-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23373-4

  • Online ISBN: 978-3-319-23374-1

  • eBook Packages: Computer ScienceComputer Science (R0)