Skip to main content

Citizen Science Land Cover Classification Based on Ground and Aerial Imagery

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9368)

Abstract

If citizen science is to be used in the context of environmental research, there needs to be a rigorous evaluation of humans’ cognitive ability to interpret and classify environmental features. This research, with a focus on land cover, explores the extent to which citizen science can be used to sense and measure the environment and contribute to the creation and validation of environmental data. We examine methodological differences and humans’ ability to classify land cover given different information sources: a ground-based photo of a landscape versus a ground and aerial based photo of the same location. Participants are solicited from the online crowdsourcing platform Amazon Mechanical Turk. Results suggest that across methods and in both ground-based, and ground and aerial based experiments, there are similar patterns of agreement and disagreement among participants across land cover classes. Understanding these patterns is critical to form a solid basis for using humans as sensors in earth observation.

Keywords

  • Land cover
  • Citizen science
  • Classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23374-1_14
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-23374-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Sparks, K., Klippel, A., Wallgrün, J.O., Mark, D.: Crowdsourcing landscape perceptions to validate land cover classifications. In: Ahlqvist, O., Janowicz, K., Varanka, D., Fritz, S. (eds.) Land Use and Land Cover Semantics - Principals, Best Practices and Prospects. CRC Press/Taylor & Francis, Boca Raton (2015)

    Google Scholar 

  2. Fritz, S., McCallum, I., Schill, C., Perger, C., Grillmayer, R., Achard, F., Kraxner, F., Obersteiner, M.: Geo-Wiki.Org: the use of crowdsourcing to improve global land cover. Remote Sens. 1(3), 345–354 (2009)

    CrossRef  Google Scholar 

  3. Ahlqvist, O.: In search of classification that supports the dynamics of science: the FAO land cover classification system and proposed modifications. Environ. Plan. B Plan. Des. 35(1), 169–186 (2008)

    CrossRef  Google Scholar 

  4. Comber, A., Fisher, P., Wadsworth, R.: What is land cover? Environ. Plan. B 32, 199–209 (2005)

    CrossRef  Google Scholar 

  5. Jepsen, M.R., Levin, G.: Semantically based reclassification of Danish land-use and land-cover information. Int. J. Geogr. Inf. Sci. 27(12), 2375–2390 (2013)

    CrossRef  Google Scholar 

  6. Robbins, P.: Beyond ground truth: GIS and the environmental knowledge of herders, professional foresters, and other traditional communities. Hum. Ecol. 31(2), 233–253 (2003)

    CrossRef  Google Scholar 

  7. Ahlqvist, O.: Semantic issues in land use and land cover studies – foundations, application and future directions. In: Giri, C. (ed.) Remote Sensing of Land Use and Land Cover: Principles and Applications, pp. 25–36. Taylor and Francis, Boca Raton (2012)

    CrossRef  Google Scholar 

  8. Coeterier, J.F.: Dominant attributes in the perception and evaluation of the Dutch landscape. Landsc. Urban Plan. 34(1), 27–44 (1996)

    CrossRef  Google Scholar 

  9. Habron, D.: Visual perception of wild land in Scotland. Landsc. Urban Plan. 42(1), 45–56 (1998)

    CrossRef  Google Scholar 

  10. Comber, A., Fisher, P., Wadsworth, R.: Integrating land-cover data with different ontologies: identifying change from inconsistency. Int. J. Geogr. Inf. Sci. 18(7), 691–708 (2004)

    CrossRef  Google Scholar 

  11. Foody, G.M.: Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002)

    CrossRef  Google Scholar 

  12. Khatib, F., DiMaio, F., Cooper, S., Kazmierczyk, M., Gilski, M., Krzywda, S., Zabranska, H., Pichova, I., Thompson, J., Popović, Z., Jaskolski, M., Baker, D.: Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat. Struct. Mol. Biol. 18(10), 1175–1177 (2011)

    CrossRef  Google Scholar 

  13. Clery, D.: Galaxy zoo volunteers share pain and glory of research. Science 333, 173–175 (2011)

    CrossRef  Google Scholar 

  14. LUCAS: Land use/cover area frame statistical survey. http://www.lucas-europa.info/

  15. COBWEB: Citizen observatory web. https://cobwebproject.eu

  16. Perger, C., Fritz, S., See, L., Schill, C., van der Velde, M., McCallum, I., Obersteiner, M.: A campaign to collect volunteered geographic information on land cover and human impact. In: GI_Forum 2012: Geovizualisation, Society and Learning (2012)

    Google Scholar 

  17. See, L., Comber, A., Salk, C., Fritz, S., van der Velde, M., Perger, C., Schill, C., McCallum, I., Kraxner, F., Obersteiner, M., Preis, T.: Comparing the quality of crowdsourced data contributed by expert and non-experts. PLoS ONE 8(7), e69958 (2013)

    CrossRef  Google Scholar 

  18. Foody, G.M., See, L., Fritz, S., Van der Velde, M., Perger, C., Schill, C., Boyd, D.S.: Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project. Trans. GIS 17(6), 847–860 (2013)

    CrossRef  Google Scholar 

  19. Comber, A., Brunsdon, C., See, L., Fritz, S., McCallum, I.: Comparing expert and non-expert conceptualisations of the land: an analysis of crowdsourced land cover data. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 243–260. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  20. Comber, A., See, L., Fritz, S.: The impact of contributor confidence, expertise and distance on the crowdsourced land cover data quality. In: GI_Forum 2014 - Geospatial Innovation for Society (2014)

    Google Scholar 

  21. Iwao, K., Nishida, K., Kinoshita, T., Yamagata, Y.: Validating land cover maps with degree confluence project information. Geophys. Res. Lett. 33, L23404 (2006)

    CrossRef  Google Scholar 

  22. Foody, G.M., Boyd, D.S.: Using volunteered data in land cover map validation: mapping West African forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(3), 1305–1312 (2013)

    CrossRef  Google Scholar 

  23. OpenStreetMap. https://www.openstreetmap.org

  24. Arsanjani, J.J., Helbich, M., Bakillah, M., Hagenauer, J., Zipf, A.: Toward mapping land-use patterns from volunteered geographic information. Int. J. Geogr. Inf. Sci. 27(12), 2264–2278 (2013)

    CrossRef  Google Scholar 

  25. Klippel, A.: Spatial information theory meets spatial thinking - is topology the Rosetta Stone of spatio-temporal cognition? Ann. Assoc. Am. Geogr. 102(6), 1310–1328 (2012)

    CrossRef  Google Scholar 

  26. Qualtrics: online survey software & insight platform. http://www.qualtrics.com/

  27. Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., Wickham, J.: Completion of the 2006 national land cover database for the conterminous United States. Photogram. Eng. Remote Sens. 77(9), 858–864 (2011)

    Google Scholar 

  28. Wickham, J.D., Stehman, S.V., Gass, L., Dewitz, J., Fry, J.A., Wade, T.G.: Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ. 130, 294–304 (2013)

    CrossRef  Google Scholar 

  29. Klippel, A., Mark, D., Wallgrün, J.O., Stea, D.: Conceptualizing landscapes: a comparative study of landscape categories with Navajo and English-speaking participants. In: Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S.M., Bell, S. (eds.) Proceedings, Conference on Spatial Information Theory (COSIT 2015), Santa Fe, NM, USA. Springer, Berlin, 12–16 Oct 2015

    Google Scholar 

Download references

Acknowledgments

This research is funded by the National Science Foundation (#0924534). We would like to thank the Degree Confluence Project for permission to use photos from the confluence.org website for our research. We would like to thank the members of the Human Factors in GIScience laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Sparks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sparks, K., Klippel, A., Wallgrün, J.O., Mark, D. (2015). Citizen Science Land Cover Classification Based on Ground and Aerial Imagery. In: Fabrikant, S., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds) Spatial Information Theory. COSIT 2015. Lecture Notes in Computer Science(), vol 9368. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23374-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23373-4

  • Online ISBN: 978-3-319-23374-1

  • eBook Packages: Computer ScienceComputer Science (R0)